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1 Newtonian Mechanics

1.1 Kinematics The position of a particle is written as x(t) or as r(t). We define the first
and second derivatives to be the velocity and acceleration of the particle:

v(t) =
dx(t)

dt
a(t) =

dv(t)

dt
=

d2x(t)

dt2
(1)

Inverting these relations gives

v(t) =

∫
a(t) dt x(t) =

∫
v(t) dt (2)

In the special case where the acceleration is time-independent, these reduce to the following:

x(t) = x0 + v0t+
1

2
at2 v(t) = v0 + at (3)

The constants x0 and v0 must be determined by initial conditions. Often we further restrict to the
case of free-fall near the surface of the Earth, in which case the constant acceleration is given by

a = −ĝ g ≈ 9.81 m/s2 ≈ 10 m/s2 (4)

where ̂ points vertically away from the center of the Earth and motion is typically taken to be
restricted to a plane. The equations of motion are then

x(t) = x0 + v0xt vx(t) = v0x (5)

y(t) = y0 + v0yt−
1

2
gt2 vy(t) = v0y − gt (6)

From these one may show that the maximum height reached is ymax = y0 +
v20y
2g and the horizontal

distance traveled before falling to the original height is R =
2v0xv0y

g = v2

g sin 2θ, where v and θ are
the initial speed and angle.

Objects undergoing uniform circular motion have constant speed but are still accelerating, as
the direction of their velocity is changing. It may be shown that the object must be accelerating
towards the center of their circular path:

ac = −v
2

r
r̂ (7)

1.2 Newton’s Laws

1. An object at rest will remain at rest unless a force acts upon it; an object in motion will not
change its motion unless a force acts upon it.

2. F = dp
dt = d(mv)

dt .

3. To every action there is always opposed an equal reaction: FAB = −FBA.

Of course, the first law is a special case of the second:
∑
F = 0⇔ dp

dt = 0. In the cases where the
mass is constant, Newton’s second law reduces to F = ma. Due to Newton’s third law all internal
forces in an object cancel when considering the motion of the object as a whole.
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Consider an object in free-fall experiencing a drag force proportional to its velocity. Newton’s
2d law gives

ma = −mĝ− bv =⇒ v̇ = −(ĝ+ b
mv) (8)

In general this is not so easy to solve, so restrict the motion to the vertical:

v̇y = −(g + b
mvy) (9)

Solving this through separation of variables gives

vy(t) = −mg
b

+
(
v0y +

mg

b

)
e−

bt
m (10)

In the limit of large t, vy approaches a constant value called the object’s terminal velocity: |vt| = mg
b .

Alternatively, this may be found quickly by requiring a = 0 in Newton’s 2d law above.
Newton’s laws may be used to analyze the motion of a rocket with no external forces. Suppose

that the rocket is expelling fuel at a rate ξ in the negative-x direction with a relative speed u. That
is, if the rocket has velocity v = vı̂, then the velocity of the ejected fuel is (v − u)̂ı. Applying
conservation of momentum for the rocket–fuel system over a time interval dt gives

M(t)v(t) = [M(t)− dm][v(t) + dv] + dm[v(t)− u] (11)

where dm = ξ dt is the amount of fuel released. Simplifying this expression, ignoring the term
dmdv, yields

0 = M(t) dv − udm = (M0 − ξt) dv − uξ dt (12)

This differential equation lends itself well to an exact solution:

v(t) = v0 +

∫ t

0

uξ

M0 − ξt′
dt′ = v0 −

[
u log (M0 − ξt′)

]t
t′=0

(13)

= v0 + u log

(
M0

M0 − ξt

)
= v0 + u log

[
M0

M(t)

]
(14)

1.3 Harmonic Oscillators A system with a restoring force proportional to its displacement
is known as a harmonic oscillator. The free system is described by

ẍ+ ω2
0x = 0 (15)

Figure 1: Damped harmonic oscillator with
ω0 = 1, initial conditions x0 = v0 = 0 and
Γ = 1

4 , 1, 2.

where ω0 =
√

k
m is the natural frequency of the

system. Due to the conservative nature of the linear
restoring force, the total energy is conserved and at
any point is given by

E =
1

2
mv2 +

1

2
kx2 =

1

2
mv2

max =
1

2
kx2

max (16)

Considering now a general system with a drag
force proportional to the velocity, fdrag = −bv, and
a time-dependent driving force, Fdr, the equation of
motion is

ẍ+ 2Γẋ+ ω2
0x =

Fdr(t)

m
Γ =

b

2m
(17)

In the case where the oscillator is not driven, i.e.
Fdr(t) = 0, there are three possible behaviors based
on the relative magnitudes of Γ and ω0:
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• Γ2 − ω2
0 < 0 (Underdamped):

x(t) = e−Γt (A cosω1t+B sinω1t) ω1 =
√
ω2

0 − Γ2 (18)

The coefficients A and B are determined by the initial conditions.

• Γ2 − ω2
0 > 0 (Overdamped):

x(t) = e−Γt
(
Aeω1t +Be−ω1t

)
ω1 =

√
Γ2 − ω2

0 (19)

The coefficients A and B are again determined by the initial conditions.

• Γ2 − ω2
0 = 0 (Critically damped):

x(t) = e−Γt [x0 + (v0 + Γx0)t] (20)

Notice that in the underdamped case the frequency of oscillation is less than the natural frequency.
In the overdamped and critically damped cases the position approaches zero exponentially, but never
cross it. Critical damping represents a limiting case where the equilibrium position is approached
as quickly as is possible.

Figure 2: Amplitude for Fdr = m = ω0 = 1 and
Γ = 1

10 as a function of the driving frequency, ω.

For non-zero driving it is best to assume a
sinusoidal driving force: if needed any motion
can be taken as a superposition of these. Write
Fdr = F0 cos (ωt), where F0 is the amplitude
and ω is the driving frequency. We look for a
particular solution to the equation

ẍ+ 2Γẋ+ ω2
0x =

F0

m
cosωt (21)

Assuming that the system will settle into mo-
tion with the same frequency as the driving
force suggests looking for solutions of the form

xp(t) = A cos (ωt− φ) (22)

Plugging this into the equation of motion gives
the following conditions on A and φ:

A =
F0/m√

4Γ2ω2 + (ω2
0 − ω2)2

φ = arctan

(
2Γω

ω2
0 − ω2

)
(23)

When the driving frequency is near the natural frequency, ω ≈ ω0, we see that the amplitude is
maximized; this is known as resonance.

1.4 Work & Energy The work done by a force on a moving object is

W =

∫
F · ds (24)

The work energy theorem states that the change in energy of a system is given by the total work
done on the system: ∑

W = ∆E (25)
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By Newton’s third law, we need only consider external forces.
So-called conservative forces may be associated with a potential energy. That is, if F = −∇U for

some U , then the work done, and thus change in energy, moving between two points is independent
of the path taken. Then U is the potential energy associated with the conservative force, and is
single-valued at every point. By its definition, we have

U = −
∫
F · ds (26)

The two forms of mechanical energy are kinetic, T , and potential, U . Kinetic energy is further
divided into translational and rotational kinetic energy. In the nonrelativistic limit these are

Tt =
1

2
mv2 =

p2

2m
Tr =

1

2
Iω2 =

L2

2I
(27)

Non-conservative forces need not conserve energy. A prime example is friction, which always
opposes the motion of an object. Static and kinetic friction are given by

fs ≤ µsN fk = µkN (28)

where N is the normal force.
Impulse is defined to be

J = ∆p =

∫
F (t) dt = F ∆t (29)

where F is the average force over the time interval ∆t.

1.5 Collisions Consider first a one-dimensional collision between two massive bodies. We may
assume that one of the objects is initially at rest (if not, make a Galilean transformation), so that
p1i = p0 and p2i = 0. Conservation of linear momentum results in

p1f + p2f = p0 (30)

This is all we may say without a further restriction. There are two limiting cases which are of
particular interest: inelastic and elastic collisions.

• Inelastic Here the two particles stick together after the collision so that they have the same
final velocity. This condition gives

v1f = v2f =
p0

m1 +m2
=

(
m1

m1 +m2

)
v1i (31)

The change in kinetic energy is thus

∆T = Tf − Ti =

[
1

2

(
m2

1

m1 +m2

)
v2

1i

]
−
(

1

2
m1v

2
1i

)
= −1

2

(
m1m2

m1 +m2

)
v2

1i = −1

2
µv2

1i (32)

The energy lost is proportional to the reduced mass of the system.

• Elastic Here energy is conserved, allowing for an exact solution of the final velocities.

v1f =

(
m1 −m2

m1 +m2

)
v1i v2f =

(
2m1

m1 +m2

)
v1i (33)

There are three limiting behaviors: m1 � m2, m1 = m2 and m1 � m2. In the case where
object one is very light, v1f ≈ −v1i and v2f ≈ 0: complete rebound. When they have the
same mass, v1f = 0 and v2f = v1i: they are exactly interchanged. When object one is very
massive, v1f ≈ v1i and v2f ≈ 2v1i: object one barrels through giving object two a big kick.
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For two-dimensional collisions again assume that one of the objects is initially at rest. Inelastic
collisions are identical to those in one-dimension, so consider an elastic collision. Momentum and
energy conservation give

p1i = p1f + p2f

p2
1i

2m1
=

p2
1f

2m1
+

p2
2f

2m2
(34)

Taking the dot product of each side with itself in the momentum conservation vector equation gives

p2
1i = p2

1f + p2
2f + 2p1f · p2f = p2

1f + p2
2f + 2p1fp2f cos (θ1 − θ2) (35)

This are not terribly enlightening, but if the two masses are equal then these reduce to

0 = 2p1fp2f cos (θ1 − θ2) =⇒ |θ1 − θ2| =
π

2
(36)

That is, the two objects exit the collision at 90◦ from each other.

1.6 Rotational Motion For rotating objects we introduce angular variables θ, ω and α,
analogous to x, v and a:

ω(t) =
dθ(t)

dt
α(t) =

dω(t)

dt
=

d2θ(t)

dt2
(37)

In the case of constant angular acceleration we have the corresponding kinematic equations:

θ(t) = θ0 + ω0t+
1

2
αt2 ω(t) = ω0 + αt (38)

For objects that are “rolling without slipping” the angular velocity and the linear velocity are
related by

v = ω × r v = rω (39)

The period, frequency and angular frequency are related by

T =
1

f
=

2π

ω
(40)

There is also the rotational form of Newton’s second law,

τ =
dL

dt
=

d(r × p)

dt
=

d(Iω)

dt
(41)

where τ = r×F is the torque and L = r×p is the angular momentum. In both of these definitions
the vector r is the displacement from the chosen axis of rotation. In the case of a rigid, rotating
object the angular momentum may also be expressed at L = Iω, where I is the momentum of
inertia, defined as

I =
∑
i

mir
2
i =

∫
r2 dm (42)

where here r is the distance to the axis of rotation. In the common case where the density of the
object is a function of position, i.e. dm

dr = ρ(r), this becomes

I =

∫
r2ρ(r) dr (43)

5



Geometry I

Hoop (about axis) MR2

Cylinder (about axis) 1
2MR2

Rod (about center) 1
12ML2

Rod (about end) 1
3ML2

Rectangular Slab (about center) 1
12M(W 2 +H2)

Hollow Sphere (about center) 2
3MR2

Solid Sphere (about center) 2
5MR2

Table 1: Moments of inertia for common constant-density geometries.

In general the moment of inertia is of the form I = βMR2, with R denoting some geometric “size”
of the object and with β ≥ 0. Often it is easiest to calculate the moment of inertia for an object
when considering rotations about its center of mass. The parallel axis theorem is useful for finding
moments of inertia about other axis that may not lend themselves well to direct integration.

I = Icm +Md2 (44)

The axis of rotation in question must be parallel to that for Icm and d denotes the perpendicular
distance between these two axes. Note that this shows that the moment of inertia for any object
is smallest when about an axis through its center of mass.

Consider a physical pendulum fixed at one end of length L. Its center of mass lies a distance
d from the pivot, and the momentum of inertia about that end is I. The coordinate in question is
the angle measured from the vertical. The torque due to gravity with the pendulum lying in the
xy-plane is

τ = d× F = −mgd(d̂× ̂) = −mgd sin θk̂ (45)

where ̂ is “up” and k̂ is “out of the board”. Applying the angular form of Newton’s 2d law gives

−mgd sin θk̂ = Iα (46)

Since the pendulum stays in the xy-plane, α = αk̂ and this becomes simply a scalar equation:

θ̈ +

(
mgd

I

)
sin θ = 0 (47)

This has no closed-form solution, but for small amplitudes, |θ| � 1, it reduces to simple harmonic
motion with frequency

ω =

√
mgd

I
(48)

For example a uniform rod of length l fixed at one end will oscillate with frequency ω =
√

3g
2l .

1.7 Noninertial Reference Frames Accelerating reference frames lead to fictitious forces.
Two common ones that arise when considering rotating reference frames are the centrifugal force
and the Coriolis force.

The centrifugal force arises as

F cf = −mω × (ω × r) (49)
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where ω is the angular velocity of the frame and r is the position in the rotating frame coordinates.
The right-hand rule shows that this force is direct outward from the axis of rotation: this is the
tendency for rotating bodies to “fling things away”.

The Coriolis force is
FCo = −2mω × v (50)

where ω is the angular velocity of the frame and v is the velocity in the rotating frame coordinates.
This force is responsible for the swirling of hurricanes in the north and south hemispheres.

1.8 Dynamics of Systems of Particles For a system of particles we may define the center
of mass to be

rcm =
1

M

∑
i

miri =
1

M

∫
r dm M =

∑
i

mi =

∫
dm (51)

This is a weighted average of the positions, and shows its use through the following calculation,

r̈cm = acm =
1

M

∑
i

miai =
1

M

∑
i

F net
i =

1

M

∑
F ext (52)

where the sum over i is over all particles in the system and F net
i denotes the net force on the ith

particle. By Newton’s third law all internal forces come in pairs which cancel in this sum, leaving
only a sum over forces external to the system. The conclusion is that the center of mass moves
as a point object would under the influence of these external forces. This validates the unspoken
assumption that we may ignore things such as inter-molecular forces when considering the motions
of macroscopic, composite objects.

1.9 The Virial Theorem For a system bound by a power-law force the virial theorem states
that the time-average of the kinetic and potential energies are related by

U12 ∝ rn12 =⇒ 2 〈TTOT〉 = n 〈UTOT〉 (53)

where TTOT is the total kinetic energy of all substituent parts and UTOT is the total potential
energy arising from all pairs. In the case of a familiar inverse-square force this becomes

〈TTOT〉 = −1

2
〈UTOT〉 (54)

For a linear restoring force, n = 2, the assertion is that

〈TTOT〉 = 〈UTOT〉 (55)

1.10 Central Forces & Celestial Mechanics Of special interest are those forces which are
“central”, in that they result from potentials which are spherically symmetric. Newtonian gravity
and the Coulomb force are both inverse square laws. In general we will consider forces arising from
potentials of the form

Un(r) = krn (56)

All central forces are conservative forces, and so the energy of an object in such a potential is
conserved. In addition, since the force acts radially, the torque about the origin is zero

τ = r × F n(r) = −nkrn−1(r × r̂) = 0 (57)
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This implies that the object’s angular momentum about the origin is conserved.
An important result is Bertrand’s theorem, which shows that closed, bound orbits are only

possible for an inverse-square law and isotropic harmonic oscillator: n = −1 and n = 2. They
correspond to the following potentials:

U−1(r) =
k

r
U2(r) = kr2 (58)

It was observed that the orbit of Mercury was not closed, but was rather precessing. Newtonian
gravity was not able to explain this process, even considering the interactions with the other planets,
but the drift discrepancy is predicted by the general theory of relativity and agrees quite well with
observation.

For the inverse-square law of Newtonian gravity there are four types of orbits, corresponding
to different conic sections:

Orbit Eccentricity Total Energy Orbital Speed

Circle ε = 0 E = −GMm
2r v =

√
GM
2r

Ellipse 0 < ε < 1 −GMm
2r < E < 0

√
GM
2r < v <

√
2GM
r

Parabola ε = 1 E = 0 v =
√

2GM
r

Hyperbola ε > 1 E > 0 v >
√

2GM
r

Kepler’s laws of planetary motion are:

1. The orbit of a planet is an ellipse with the Sun at one focus.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal time intervals.

3. The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit: T 2

a3
= 4π2

G(M+m) ≈
4π2

GM .

In addition, for Newtonian gravity we have the shell-theorem, which is analogous to Gauss’ law
in electromagnetism:

∇ · g = −4πGρ

∮
∂V
g · dA = −4πG

∫
V
ρdV (59)

The quantity g is the gravitational field and is given by F
m , similar to how the electric field is

defined. In practice this means that for spherically symmetric mass distributions one needs only
consider the gravitational force from mass closer to the origin than the object in question. Outside
of the surface of the Earth the force of gravity may be found to be the familiar

F out(r) = −GMm

r2
r̂ (60)

However, within the Earth at a radius r < R, let V be the ball of radius r so that we have∮
∂V
g · dA = −4πG

∫
V
ρdV (61)

F

m

∮
∂V

dA = −4πGM
4
3πR

3

∫
V

dV (62)
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F

m

(
4πr2

)
= −4πGM

4
3πR

3

(
4

3
πr3

)
(63)

F = −GMmr

R3
(64)

where we leverage the spherical symmetry to simplify g · dA = |g| |dA| = g dA and conclude that
F is constant everywhere on the closed surface. The final result is

F (r) =

{
−GMm

R2
r
R r̂ r < R

−GMm
r2

r̂ r > R
(65)

Of course these agree at the boundary r = R, as expected. Near the surface of the Earth, r ≈ R,
the force of gravity is nearly constant with the form

F ≈ −mgr̂ g =
GM⊕
R2
⊕
≈ 9.81 N/kg (66)

with M⊕ and R⊕ being the mass and radius of the Earth. This justifies the constant acceleration
assumption used in the kinematic equations.

2 Lagrangian & Hamiltonian Formalism

2.1 Lagrangian Mechanics Let q = (q1, q2, . . . , qn) be a set of n coordinates describing the
state of a system. We would like to know how these coordinates change through time. Introduce
the Lagrangian, L(q, q̇; t), which is a function of the coordinates, their first time derivatives and
perhaps time; in the nonrelativistic case we have L = T − U . Hamilton’s principle asserts that
the time integral of L between two states is an extremum with respect to variations to the path.
Defining the action as S =

∫
L(q, q̇; t) dt, Hamilton’s principle reduces to δS = 0.

Let q(t) describe the evolution of a system between two times, and write an arbitrary, small
variation in q(t) as εη(t), where ε is small and η(t1) = η(t2) = 0. Then we have

q(t) −→ q(t) + εη(t) q̇(t) −→ q̇(t) + εη̇(t) (67)

Hamilton’s principle gives

δS = δ

∫ t2

t1

L(q, q̇; t) dt (68)

0 =

∫ t2

t1

[
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂t
δt

]
dt (69)

0 =

∫ t2

t1

∂L

∂q
εη(t) dt+

∫ t2

t1

∂L

∂q̇
εη̇(t) dt (70)

0 =

∫ t2

t1

∂L

∂q
εη(t) dt+

[
∂L

∂q̇
εη(t)

]t2
t=t1

−
∫ t2

t1

(
d

dt

∂L

∂q̇

)
εη(t) dt (71)

0 =

∫ t2

t1

[
∂L

∂q
− d

dt

∂L

∂q̇

]
εη(t) dt (72)

The action is an extremum for the path q iff the above vanishes for all η. This implies that the
expression in the brackets must vanish, giving the Euler-Lagrange equations:

δS = 0 =⇒ d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (73)
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Coordinate System Lagrangian

Cartesian 1
2m
(
ẋ2 + ẏ2 + ż2

)
− U(x, y, z)

Cylindrical 1
2m
(
ṙ2 + r2θ̇2 + ż2

)
− U(r, θ, z)

Spherical 1
2m
(
ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

)
− U(r, θ, φ)

Table 2: General Lagrangians for a single point mass in common coordinate systems.

These compose a system of n second-order differential equations in the coordinates q1, . . . , qn.
Specifying initial conditions uniquely determines the solution and thus also the time evolution of
the coordinates.

Of special interest are so-called cyclic coordinates, where qi does not appear in the Lagrangian.
In this case the Euler-Lagrange equation for this coordinate reduces to

d

dt
pi = 0 pi ≡

∂L

∂q̇i
(74)

That is, the conjugate momentum to qi, as defined above, is a constant of motion.

2.2 Hamiltonian Mechanics A set of coordinates q have conjugate momenta defined by

p =
∂L

∂q̇
(75)

A Legendre transformation of the Lagrangian results in the Hamiltonian:

H(q,p; t) = q̇ · p− L(q, q̇; t) (76)

In the nonrelativistic case we have H = T +U . Using this definition for the Hamiltonian it is clear
that H and L are related by

∂H

∂q
= −∂L

∂q

∂H

∂p
= q̇

∂H

∂t
= −∂L

∂t
(77)

The Euler-Lagrange equations simplify these to Hamilton’s equations:

q̇ =
∂H

∂p
ṗ = −∂H

∂q

∂H

∂t
= −∂L

∂t
(78)

In comparison to Lagrangian mechanics these give 2n first-order differential equations in the coor-
dinates q1, . . . , qn and p1, . . . , pn. Again, specifying initial conditions uniquely determines the time
evolution of the coordinates.

Hamilton’s equations may be rephrased in terms of Poisson brackets, which are defined to be

{f, g} =
∂f

∂q
· ∂g
∂p
− ∂f

∂p
· ∂g
∂q

(79)

Poisson brackets satisfy the Jacobi identity, as well as the following:

{f, g} = −{g, f} {f + g, h} = {f, h}+ {g, h} {fg, h} = {f, h}g + f{g, h} (80)

The time evolution of any function is then given by

d

dt
f(q,p; t) =

∂f

∂q
· dq

dt
+
∂f

∂p
· dp

dt
+
∂f

∂t
(81)
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df

dt
=

[
∂f

∂q
·
(
∂H

∂p

)
+
∂f

∂p
·
(
−∂H
∂q

)]
+
∂f

∂t
(82)

df

dt
= {f,H}+

∂f

∂t
(83)

In particular, we have

dq

dt
= {q, H} dp

dt
= {p, H} dH

dt
=
∂H

∂t
(84)

2.3 Generalized Coordinates & Normal Modes Both Lagrangian and Hamiltonian
mechanics give equations of motion which couple the coordinates. There are cases where one may
define a new coordinate system in which the equations of motion completely decouple. These
generalized coordinates lead to an easier analysis, and any motion will be a superposition of these
simple motions.

The best way to see this is through an example. Consider two penduli connected by a spring.
Both have mass m and length l and the spring has a natural length equal to the separation of the
penduli and spring-constant k. We take as coordinates the two angles from the vertical: θ1 and θ2.
Assuming small angles, the Lagrangian for this system is

L =
1

2
ml2

(
θ̇2

1 + θ̇2
2

)
− 1

2
mgl

(
θ2

1 + θ2
2

)
− 1

2
kl2(θ2 − θ1)2 (85)

The Euler-Lagrange equations give

mlθ̈1 +mgθ1 − kl(θ2 − θ1) = 0 (86)

mlθ̈2 +mgθ2 + kl(θ2 − θ1) = 0 (87)

These are not so clean. Introduce the generalized coordinates ξ = 1√
2

(θ1 + θ2) and η = 1√
2

(θ2 −
θ1), inspired by the third term in the above Lagrangian. One way to proceed is to rewrite the
Lagrangian:

L =
1

2
ml2

(
ξ̇2 + η̇2

)
− 1

2
mgl

(
ξ2 +η2

)
−kl2η2 =

[
1

2
ml2ξ̇2 − 1

2
mglξ2

]
+

[
1

2
ml2η̇2 −

(
1

2
mgl + kl2

)
η2

]
(88)

By the choice in coordinates the Lagrangian decomposes into a sum. At this point we might
recognize these as the Lagrangians for simple harmonic oscillators. If not, the equations of motion
are quite revealing:

ξ̈ +
(g
l

)
ξ = 0 (89)

η̈ +

(
g

l
+

2k

m

)
η = 0 (90)

Of course one could bypass writing the Lagrangian out again by simple substituting the new
coordinates into the Euler-Lagrange equations found initially. In either case, we have two normal

modes with eigenfrequencies ω1 =
√

g
l and ω2 =

√
g
l + 2k

m . The first of these corresponds to the

two penduli moving together with frequency
√

g
l , as if the spring were not there at all (note that

k is not present in the frequency expression). The second corresponds to the two penduli moving
asymmetrically, and the presence of the spring increases the frequency from the natural frequency

ω0 =
√

g
l . Indeed, these interpretations exactly match the definitions of ξ and η.

Such an in-depth analysis is often time consuming. One can gain much insight by considering
limit cases for masses, spring constants and lengths.
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3 Fluid Dynamics

Pressure is defined to be

P =
dF

dA
(91)

The Bernoulli equation for incompressible fluids is

P +
1

2
ρv2 + ρgh = const. (92)

This is analogous to conservation of energy. When the fluid is static we see that the pressure
increases linearly with the depth, proportional to the fluid density. Fluid flow also satisfies the
continuity equation:

dρ

dt
+∇ · (ρu) = 0 (93)

For incompressible fluids this amounts to the condition

∇ · u = 0 (94)

In the simple case where an incompressible fluid is moving through a tube of variable cross-sectional
area, we must have

Av = const. (95)

where A is the cross-sectional area at some point and v is the speed of the fluid at this point.
Simply, the rate at which fluid enters the tube must be the same as the rate at which fluid exits.

From the Bernoulli equation it is clear that for static fluids the pressure increases with depth.
An object submerged in the fluid will have unequal pressures on its top and bottom, leading to
a buoyancy force. This buoyant force on an object is equal to the weight of the fluid which it
displaced; this is Archimedes’ principle.

Fbuoy = ρflV g (96)
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A Summary

Kinematics

x(t) = x0 + v0t+
1

2
at2 (Constant Acceleration)

v(t) = v0 + at

ymax = y0 +
v2

0y

2g
(Max Height)

R =
v2

g
sin 2θ (Range Equation)

Newton’s Laws∑
F = 0 ⇐⇒ dp

dt
= 0 (1st Law)

F =
dp

dt
=

d(mv)

dt
(2d Law)

FAB = −FBA (3d Law)

Work & Energy

W =

∫
F · ds (Work)∑

W = ∆E (Work-Energy Theorem)

F = −∇U (Conservative Force)

T = Tt + Tr =
1

2
mv2 +

1

2
Iω2 =

p2

2m
+
L2

2I
(Kinetic Energy)

fs ≤ µsN (Static Friction)

fk = µkN (Kinetic Friction)

J = ∆p =

∫
F (t) dt (Impulse)

Rotational Motion

θ(t) = θ0 + ω0t+
1

2
αt2 (Constant Angular Acceleration)

ω(t) = ω0 + αt

T =
1

f
=

2π

ω
(Period ↔ Frequency)

τ = r × F (Torque)

L = r × p = Iω (Angular Momentum)

I =
∑
i

mir
2
i =

∫
r2 dm =

∫
r2ρ(r) dr (Momentum of Inertia)
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τ =
dL

dt
=

d(r × p)

dt
=

d(Iω)

dt
(Angular 2d Law)

Noninertial Reference Frames

F cf = −mω × (ω × r) (Centrifugal Force)

FCo = −2mω × v (Coriolis Force)

Dynamics of Systems of Particles

rcm =
1

M

∑
i

miri =
1

M

∫
r dm (Center of Mass)

Central Forces & Celestial Mechanics

dA

dt
= const. (Kepler’s 2d Law)

T 2

a3
=

4π2

G(M +m)
≈ 4π2

GM
(Kepler’s 3d Law)

g =
GM⊕
R2
⊕
≈ 9.81 N/kg (Earth Surface Gravity)

Lagrangian Mechanics

S =

∫
L(q, q̇; t) dt (Action)

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
(Euler-Lagrange Equations)

Hamiltonian Mechanics

p =
∂L

∂q̇
(Conjugate Momentum)

H(q,p; t) = q̇ · p− L(q, q̇; t) (Hamiltonian)

q̇ =
∂H

∂p
= {q, H} (Hamilton’s Equations)

ṗ = −∂H
∂q

= {p, H}

dH

dt
=
∂H

∂t
= −∂L

∂t

Fluid Dynamics

P =
dF

dA
(Pressure)

const. = P +
1

2
ρv2 + ρgh (Bernoulli Equation)

0 =
dρ

dt
+∇ · (ρu) (Continuity Equation)

Av = const. (Incompressible Tube Flow)

Fbuoy = ρflV g (Archimedes’ Principle)
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