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1 Introduction

1.1 History Up through the early twentieth century there were several phenomena which could
not be explained by classical mechanics: The photoelectric effect proved impossible for classical
wave theory, descriptions of blackbodies were riddled with divergences, and orbiting electrons should
spiral into the atomic nucleus.

There were several important milestones in the development of quantum mechanics:

∼1805: Young’s double-slit experiment. Showed wave nature of light.

1905: Photoelectric effect explained by Einstein, relying on quanta of light.

1911: Gold foil experiment by Rutherford, showing existence of nucleus.

1920: Stern-Gerlach experiment, showing quantization of spin.

In 1923 de Broglie introduced the idea of matter waves, proposing that not only photons but
all types of matter have both a particle and a wave character. The wavelength and momentum of
a particle are related by

p =
h

λ
(1)

1.2 Photoelectric Effect The photoelectric effect posed a problem before the introduction of
quantum mechanics. When light was shone on a metal it was observed that electrons were ejected
only above a specific frequency of light, and that their maximum kinetic energy was independent
of the intensity of the incident beam. In addition, there seemed no indication of a delay in ejection,
as predicted by the well-accepted wave-model of light. The maximum kinetic energy of ejected
electrons is given by

Kmax = hν −W (2)

where W is the work function, a property of the metal. One may observe this effect by shining
light on one of two parallel plates and either measuring the current as electrons jump from on to
the other, or increase the potential between the plates until no current flows. The point at which
the current stops is known as the stopping potential, and is related to the maximum kinetic energy
of the electrons by

Kmax = eVstop (3)

1.3 Operators In a few words, operators are objects which act on functions and spit out
functions. A common example is the derivative operator, D, defined by D · f(x) = f ′(x). Another
simple example is the identity operator, I, which acts as I · f(x) = f(x).

A Hilbert space H has an inner product, denoted 〈·, ·〉. To each operator A we may associate
another operator A†, known as its adjoint, defined to satisfy

〈Au, v〉 = 〈u,A†v〉 ∀u, v ∈ H (4)

An operator is called Hermitian if A† = A.
The commutator is defined as [A,B] = AB −BA. Some commutator identities are

[AB,C] = [A,C]B +A[B,C] [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (5)
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Observable Operator

xi xi

pi −i~ ∂
∂xi

T p2

2m = − ~2
2m∇

2

Li (r × p)i = εijkr
jpk = εijkr

j ∂
∂xk

Table 1: Common operators in the position basis.

The Heisenberg uncertainty principle is a general feature of wave-phenomena:

∆A∆B ≥ 1

2

∣∣ 〈[A,B]〉
∣∣ (6)

The ability to measure two observables simultaneously is limited by the expectation value of their
commutator! The commonly quoted version of this is

∆x∆p ≥ ~
2
, (7)

indicating that a state of both definite position and definite momentum is impossible.
For an operator Q we have that its expected value is

〈Q〉 = 〈ψ|Q|ψ〉 =

∫
ψ∗(x)Q̂ψ(x) dx (8)

This is different than the most probable, which would be the peak in the probability distribution
for the values of measuring Q.

For example, if |n〉 are a set of orthonormal eigenfunctions of N with eigenvalues n, then the
expectation value of N for the state |ψ〉 = 1√

50

(
7 |3〉 − |4〉

)
is

〈N〉 = 〈ψ|N |ψ〉 =
1

50

(
7 〈3| − 〈4|

)
N
(
7 |3〉 − |4〉

)
(9)

=
1

50

(
49 〈3|N |3〉 − 7 〈3|N |4〉 − 7 〈4|N |3〉+ 〈4|N |4〉

)
(10)

=
1

50

(
147 〈3|3〉 − 28 〈3|4〉 − 21 〈4|3〉+ 4 〈4|4〉

)
(11)

=
1

50

(
147 + 4

)
(12)

= 3.02 (13)

Of course this is long-winded, and there is a short-cut when the basis is orthonormal: the square
of a coefficient is the probability of measuring the corresponding eigenvalue. Here the probability
of measuring 3 is 49

50 and the probability of measuring 4 is 1
50 . Thus the expected value is

〈N〉 = 3 · 49

50
+ 4 · 1

50
=

151

50
= 3.02 (14)

Again, this trick only works when the basis set consists of orthonormal eigenvectors of the operator.
Recalling the classical mechanics result concerning time-evolution of functions:

df

dt
= {f,H}+

∂f

∂t
(15)
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The quantum mechanical analogue of this concerns the expected value of an operator:

d

dt
〈A〉 =

1

i~
〈[A,H]〉+

〈
∂A

∂t

〉
(16)

This is the Ehrenfest theorem. A special case of this relates position and momentum in a familiar
way for a particle moving in a time-independent potential V :

m
d

dt
〈x〉 = 〈p〉 d

dt
〈p〉 = −

〈
∂V (x)

∂x

〉
(17)

Namely, the expected values follow the classical equations of motion.

1.4 Postulates of Quantum Mechanics

• The state of a system is completely specified by a wave/state-function, Ψ(r; t), that depends
on the coordinates and on time. It is such that Ψ∗Ψ dr represents the probability that the
particles lies in the volume element dr at the given time.

• Every observable quantity in classical mechanics corresponds to a linear, Hermitian operator
in quantum mechanics (recall that Hermitian operators only have real-valued eigenvalues).

• A measurement of an observable with operator A will only ever result in one of its eigenvalues,
a, satisfying A |Ψ〉 = a |Ψ〉.

• The expected value of the observable corresponding to Â is given by

〈A〉 = 〈Ψ|Â|Ψ〉 =

∫
Ψ∗ÂΨ dr (18)

• The time evolution of the wavefunction is given by the time dependent Schrödinger equation.

1.5 Simultaneous Eigenstates An important result is that if two operators commute, then
there exists a so-called simultaneous eigenbasis consisting of eigenfunctions of both operators. As-
sume that A and B commute, and let |a〉 be an eigenstate of A with eigenvalue a. Then we have

A(B |a〉) = BA |a〉 = Ba |a〉 = a(B |a〉) (19)

The state B |a〉 is an eigenstate of A with eigenvalue a: this means that it must be proportional to
|a〉. We conclude that B |a〉 = b |a〉 for some constant b. This is exactly what we wished to show,
and now we write the state as |a, b〉 to label its two eigenvalues.

2 Schrödinger Equation

The Schrödinger equation is inspired by classical mechanics, in which the Hamiltonian of a system is
related to the energy of the system. To transition to quantum mechanics we suppose that dynamical
variables become operators. The most general form of the Schrödinger equation is

Ĥ(t) |ψ〉 = i~
∂

∂t
|ψ〉 (20)
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The solution is fairly easy to write down: it is

|ψ(t)〉 = e−
i
~
∫ t
0 Ĥ(t′) dt′ |ψ(0)〉 (21)

However, often the integration and operator exponential are intractable and other methods are
necessary. One common simplification is to consider systems consisting of non-relativistic particles,
in which we classically have

H =
p2

2m
+ V (q) (22)

for some pair of canonical coordinates q and p. For example, working in the position basis with
cartesian coordinates x and momentum p means that H becomes the operator

Ĥ = − ~2

2m

∂2

∂x2
+ V̂ (x) (23)

For an angular variable, θ, the Hamiltonian would be

Ĥ = − ~2

2ma2

∂2

∂θ2
+ V̂ (θ) (24)

for some fixed radius a. These generalize quite easily to multiple coordinates.
The time-dependent Schrödinger equation is:[

− ~2

2m
∇2 + V (x)

]
Ψ(x; t) = i~

∂Ψ(x; t)

∂t
(25)

If we assume that Ψ is separable, namely that Ψ(x; t) = ψ(x)T (t), this reduces to the time-
independent Schrödinger equation:[

− ~2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x) (26)

The time dependence of Ψ is T (t) = e−iEt/~. In order to be physical, we often require that both ψ
and ∂ψ

∂xi
be continuous.

2.1 Probability Current Density From the Schrödinger equation we may form the conju-
gate equation, assuming that V ∗(x) = V (x):

− ~2

2m
∇2Ψ∗(x) + V (x)Ψ∗(x) = −i~ ∂

∂t
Ψ∗(x) (27)

Multiplying the Schrödinger equation by Ψ∗ and the conjugate equation by Ψ gives

− ~2

2m
Ψ∗
(
∇2Ψ

)
+ V (x)Ψ∗Ψ = i~ Ψ∗

∂Ψ

∂t
(28)

− ~2

2m

(
∇2Ψ∗

)
Ψ + V (x)Ψ∗Ψ = −i~∂Ψ∗

∂t
Ψ (29)

Subtracting these two equations gives

i~
(

Ψ∗
∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ

)
= − ~2

2m

(
Ψ∗∇2Ψ−Ψ∇2Ψ∗

)
(30)
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∂(Ψ∗Ψ)

∂t
= − ~

2mi
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) (31)

Rearranging results in

∂(Ψ∗Ψ)

∂t
+∇ ·

[
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)

]
= 0 (32)

Making the following associations,

ρ = Ψ∗Ψ j =
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗) (33)

we see that ρ and its associated current, j, satisfy the continuity equation:

∂ρ

∂t
+∇ · j = 0 (34)

The interpretation is that ρ = Ψ∗Ψ is a probability density, meaning that j is the probability
current density, showing how the probability density function is changing through time.

The probability current density is useful for calculating transmission and reflection coefficients.
For a surface of interest, these are

T =
jtrans · n̂
jinc · n̂

=
|jtrans|
|jinc|

R = −jrefl · n̂
jinc · n̂

=
|jrefl|
|jinc|

(35)

2.2 One-Dimensional Potentials There are several classic one-dimensional potentials which
lend themselves to exact solutions.

2.2.1 Infinite Square Well Here the form of the potential in Schrödinger’s equation is

V (x) =

{
0 0 ≤ x ≤ L
∞ otherwise

(36)

One may run into cases where the well is defined in the region |x| ≤ L
2 . This, of course, does not

change the solutions but only their mathematical description.
We look for solutions to the time-independent Schrödinger equation. Outside of the box we

must have ψ = 0. This means that we must solve the following constrained problem

− ~2

2m

∂2ψ(x)

∂x2
= Eψ(x) ψ(0) = ψ(L) = 0 (37)

for x in the interval [0, L]. Notice that we cannot require the derivative of ψ to be continuous at
the boundaries. This arises because we are considering an idealized, non-physical potential.

Figure 1: The first five eigenfunctions for
the infinite square well.

Keeping the constraint ψ(0) = 0 in mind, we have
that the general solution at this point is

ψ(x) = A sin

(√
2mE

~2
x

)
. (38)

Enforcing the second constraint, ψ(L) = 0, gives the
condition√

2mE

~2
L = nπ n ∈ {1, 2, 3, . . .}, (39)
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from which we conclude that the energy is quantized as

En =
~2π2n2

2mL2
. (40)

Our solutions now stand as

ψn(x) = An sin
(nπx
L

)
n ∈ {1, 2, 3, . . .}. (41)

Requiring that these states be normalized gives

1 =

∫ L

0
ψ∗(x)ψ(x) dx = |An|2

∫ L

0
sin2

(nπx
L

)
dx =

L

2
|An|2. (42)

Choosing An =
√

2
L yields the final result,

ψn(x) =

√
2

L
sin
(nπx
L

)
. (43)

Figure 2: The only four bound states
for a particular finite square well.

2.2.2 Finite Square Well The potential here is
given by

V (x) =

{
0 |x| < L

2

V0 |x| ≥ L
2

(44)

where V0 > 0. We are interested in looking for bound
states, so consider a state with energy E < V0. Write
down the wavefunction in each of the regions as

ψ(x) =


A′ek2x +B′e−k2x x < L

2

C ′eik1x +D′e−ik1x |x| < L
2

F ′ek2x +G′e−k2x x > L
2

(45)

k1 =

√
2mE

~2
k2 =

√
2m(V0 − E)

~2
(46)

We must have B′ = F ′ = 0 so that the wavefunction
is bounded at ±∞, allowing it to be normalized. It is
helpful to express the part of the wavefunction within the well in terms of sines and cosines instead.
This gives

ψ(x) =


Aek2x x < L

2

B sin k1x+ C cos k1x |x| < L
2

De−k2x x > L
2

(47)

In satisfying the boundary conditions at x = ±L
2 we find two distinct sets of continuous solutions

of definite parity:

ψS(x) =


Aek2x x < −L

2

Ae−k2L/2 cos k1x

cos
(

k1L
2

) |x| < L
2

Ae−k2x x > L
2

ψA(x) =


−Aek2x x < −L

2

Ae−k2L/2 sin k1x

sin
(

k1L
2

) |x| < L
2

Ae−k2x x > L
2

(48)
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Enforcing continuity of ∂ψ
∂x gives the following conditions for the symmetric and antisymmetric

solutions:

S : k2 = k1 tan

(
k1L

2

)
A : k2 = −k1 cot

(
k1L

2

)
(49)

Recalling that both k1 and k2 are functions of E, we see that only discrete energies are possible: the
solutions of these transcendental equations, which may be solved graphically. Doing so shows that
there are only finitely many bound states, and that the number decreases to one as V0 → 0. There
is always a symmetric bound state, no matter how small V0 > 0 is. However, if V0 is small enough
there are no antisymmetric, bound states. Also, as V0 →∞, we recover exactly the wavefunctions
and energies of the infinite square well, as one might expect.

2.2.3 Step Next we consider the following form for a one-dimensional potential:

V (x) =

{
0 x < 0

V0 x ≥ 0
(50)

We do not expect to find any bound states in this case, but given a particle initially with negative
position moving to the right we may ask about the probability of finding it in the higher potential
region continuing on its way to +∞. We may write down the wavefunction:

ψ(x) =

{
Aeik1x +Be−ik1x x < 0

Ceik2x x ≥ 0
k1 =

√
2mE

~2
k2 =

√
2m(E − V0)

~2
(51)

There are two cases, corresponding to whether E or V0 is larger:

• Case I (E > V0). Here all wavenumbers are real, and all we must do is satisfy the boundary
conditions at x = 0. Doing this gives

ψ(x) =

Ae
ik1x +A

(
k1−k2
k1+k2

)
e−ik1x x < 0

A
(

2k1
k1+k2

)
eik2x x ≥ 0

(52)

The reflection and transmission coefficients are

R =
k1

k1

|B|2

|A|2
=

(
k1 − k2

k1 + k2

)2

T =
k2

k1

|C|2

|A|2
=

4k1k2

(k1 + k2)2
(53)

One may quickly check that R+ T = 1, as expected.

• Case II (E < V0). Here the wavenumber in the higher potential region is imaginary, and so
we may write

ψ(x) =

{
Aeik1x +Be−ik1x x < 0

Ce−k
′
2x x ≥ 0

k1 =

√
2mE

~2
k′2 =

√
2m|E − V0|

~2
(54)

In the region x > 0 the wavefunction dies away quite quickly. Again the boundary conditions
must be met. The result is

ψ(x) =

Ae
ik1x +A

(
k1−ik′2
k1+ik′2

)
e−ik1x x < 0

A
(

2k1
k1+ik′2

)
e−k

′
2x x ≥ 0

(55)
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Figure 3: Step potential probability densities for E < V0 and E > V0.

This gives for the reflection coefficients

R =
k1

k1

|B|2

|A|2
=

∣∣∣∣k1 − ik′2
k1 + ik′2

∣∣∣∣2 = 1, (56)

from which we deduce the transmission coefficient is T = 0, matching our classical expecta-
tions.

2.2.4 Finite Barrier Consider the finite barrier potential:

V (x) =

{
0 x < 0 or x > L

V0 0 ≤ x ≤ L
(57)

where V0 > 0. We consider a particle initially with negative position moving to the right. As with
the step potential above, there are two cases, depending on which of E and V0 is larger.

• Case I (E > V0). Here all the wavenumbers are real, so we may immediately write down
the wavefunction as

ψ(x) =


Aeik1x +Be−ik1x x < 0

Ceik2x +De−ik2x 0 ≤ x ≤ L
Feik1x x > L

(58)

For x > L there is only the right-moving piece since in this region there is nothing to have
reversed the particle’s direction. Satisfying the boundary conditions at x = 0 and x = L

Figure 4: Finite barrier probability densities for E > V0 and E < V0.
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results in unenlightening expression for the coefficients. The takeaway is the transmission
coefficient, i.e. the probability of passing the barrier:

T =
1

1 +
V 2
0 sin2 (k2L)
4E(E−V0)

(59)

Notice that when the system is “tuned” to have sin (k2L) = 0, the transmission probability
is exactly one.

• Case II (E < V0). Here we get real exponentials within the barrier. In contrast with classical
mechanics, there is a nonzero probability of passing through to x > L:

T =
1

1 +
V 2
0 sinh2 (k2L)
4E(V0−E)

(60)

Note the similarity to the E > V0 transmission coefficient. However, now there is no tuning
that may be done to allow T = 1.

2.2.5 Dirac Delta

• Repulsive. We have a Dirac delta barrier given by

V (x) = αδ(x) α > 0 (61)

This may be thought of as a limiting case of the finite barrier with L → 0 and V0 → ∞
but LV0 = α. Using the expression found above, we find the transmission and reflection
coefficients to be

T =
2E~2

2E~2 +mα2
R =

mα2

2E~2 +mα2
(62)

• Attractive. In the case where the potential forms a sharp “well”, there is actually a bound
state! If the potential is given by

V (x) = −βδ(x) β > 0 (63)

then the bound state is

ψ(x) =
√

Λ e−Λ|x| Λ =
mβ

~2
(64)

2.3 Harmonic Oscillator The quantum harmonic oscillator lends itself to two methods of
solving: one by sifting through tedious differential equations and the other through an elegant use
of clever operators.

2.3.1 Differential Equation Method The time-independent Schrödinger equation for the
one-dimensional harmonic oscillator is(

− ~2

2m

∂2

∂x2
+

1

2
mω2x2

)
ψ(x) = Eψ(x) (65)

Writing ξ =
√

mω
~ x cleans things up nicely:(

−1

2

∂2

∂ξ2
+

1

2
ξ2

)
ψ(ξ) =

E

~ω
ψ(ξ) (66)
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For large ξ the function e−ξ
2/2 is an approximate solution that is normalizable. To find exact

solutions, write ψ(ξ) = f(ξ)e−ξ
2/2, where f grows more slowly than eξ

2/2 for large ξ. Substituting
this in gives the following differential equation for f :

f ′′(ξ)− 2ξf ′(ξ) + (2E − 1) f(ξ) = 0 E =
E

~ω
(67)

Assuming a power-series solution of the form f(ξ) =
∑∞

n=0 anξ
n leads to a recurrence relation for

the coefficients:

an+2 =
2n− 2E + 1

(n+ 1)(n+ 2)
an (68)

For large n, these grows as an+2 ∼ 2
nan, leading to f ∼ eξ

2
. We disallowed this possibility when

assuming f , so we conclude that the power series must terminate for some value of n. This forces
either a0 or a1 to be zero, and requires the familiar condition: E = n+ 1

2 for some n ∈ {0, 1, 2, . . .}.
The polynomials that result are the Hermite polynomials, Hn(ξ). The full, normalized solutions
are

ψn(x) =
1√

2nn!
4

√
mω

π~
Hn(ξ)e−ξ

2/2 ξ =

√
mω

~
x (69)

The first few eigenfunctions are

ψ0(x) = 4

√
mω

π~
e−ξ

2/2 (70)

ψ1(x) = 4

√
mω

π~
√

2 ξe−ξ
2/2 (71)

ψ2(x) = 4

√
mω

π~
1√
2

(
2ξ2 − 1

)
e−ξ

2/2 (72)

ψ3(x) = 4

√
mω

π~
1√
3

(
2ξ3 − 3ξ

)
e−ξ

2/2 (73)

One may also see a potential that is for a harmonic oscillator in the region x > 0 but is infinite
for x < 0. In this case everything above has been valid except for the new boundary condition
at x = 0 and the normalization. Of the solutions we have found, only the odd solutions are now
allowed, and so the new energy spectrum is

E′n = ~ω
(
n+

1

2

)
n ∈ {1, 3, 5, . . .} (74)

2.3.2 Algebraic Method The harmonic oscillator Hamiltonian is

H =
p̂2

2m
+

1

2
mω2x̂2 (75)

As a sum of squares this suggests a factorization of the form

H = (ax̂− ibp̂)(ax̂+ ibp̂) + c a, b, c ∈ R (76)

Some algebra gives

H =
1

2
mω2

(
x̂2 + i

x̂p̂− p̂x̂
mω

+
p̂2

m2ω2

)
− iω

2
[x̂, p̂] (77)
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=
1

2
mω2

(
x̂− ip̂

mω

)(
x̂+

ip̂

mω

)
+

~ω
2

(78)

Towards this goal, define the following dimensionless “ladder” operators:

a =

√
mω

2~

(
x̂+

ip̂

mω

)
a† =

√
mω

2~

(
x̂− ip̂

mω

)
, (79)

as well as the “number operator”, N = a†a. We may now write the Hamiltonian in the compact
form,

H = ~ω
(
N +

1

2

)
= ~ω

(
a†a+

1

2

)
. (80)

These new operators satisfy the commutation relations

[a, a†] = 1 [N, a] = −a [N, a†] = a†. (81)

a and a† are not Hermitian operators (a 6= a†), and so are not observables. However, N † = (a†a)† =
a†a = N , and so N is a Hermitian operator. Write the eigenstates of N as |n〉, so that N |n〉 = n |n〉.
Since [H,N ] = 0, these satisfy also H |n〉 = ~ω(n+ 1

2) |n〉. Using the commutation relations, we see

N(a |n〉) = (aN + [N, a]) |n〉 = aN |n〉 − a |n〉 = an |n〉 − a |n〉 = (n− 1)(a |n〉) (82)

N(a† |n〉) = (a†N + [N, a†]) |n〉 = a†N |n〉+ a† |n〉 = a†n |n〉+ a† |n〉 = (n+ 1)(a† |n〉) (83)

The state a |n〉 has eigenvalue n − 1 and the state a† |n〉 has eigenvalue n + 1. We conclude that
they must be proportional to the next-higher or next-lower eigenstate. The normalization may be
found to be

a |n〉 =
√
n |n− 1〉 a† |n〉 =

√
n+ 1 |n+ 1〉 (84)

The ladder operators “raise” and “lower” states from one into another, changing the energy by
±~ω. However, since H is positive definite, we may not lower the energy indefinitely. There must
exist some ground state, |0〉, such that a |0〉 = 0. Any excited state is found by acting on the ground
state with the raising operator.

a |0〉 = 0 |n〉 =
1√
n!

(
a†
)n |0〉 (85)

Notice that this gives a first-order ODE for the ground state, in contrast to the second-order
equation of the previous section:(

x+
~
mω

∂

∂x

)
|0〉 = 0 =⇒ 〈x|0〉 = Ae−

mω
2~ x

2
(86)

3 Angular Momentum

3.1 Orbital Angular Momentum Classically, three-dimensional angular momentum is

given by L = r×p, so that Li = εijkr
jpk (explicitly, Lx = ypz−zpy, Ly = zpx−xpz, Lz = xpy−ypx).

We may use the commutation relations for x and p to find those for Li when considering angular
momentum quantum mechanically. For example,

[Lx, Ly] = [ypz − zpy, zpx − xpz] = y[pz, z]px + x[z, pz]py = i~(xpy − ypx) = i~Lz (87)
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In general, we have
[Li, Lj ] = i~εijkLk (88)

Total angular momentum, L2 = L2
x + L2

y + L2
z, commutes with each Li. For example:

[L2, Lx] = [L2
x + L2

y + L2
z, Lx] = [L2

y, Lx] + [L2
z, Lx] (89)

= Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz (90)

= i~ (−LyLz − LzLy + LzLy + LyLz) = 0 (91)

We see that L2 and one of its components have a simultaneous eigenbasis. Conventionally we
choose to single out Lz, and write

L2 |l,m〉 = ~2l(l + 1) |l,m〉 Lz |l,m〉 = ~m |l,m〉 (92)

The ~s are to carry the dimension, and the unusual ‘l(l + 1)’ is chosen to simplify later results.
Now to find the allowed values of l and m.

Define the operators L± = Lx ± iLy with satisfy the following commutation relations:

[L+, L−] = 2~Lz [Jz, J±] = ±~L± [L2, L±] = 0 (93)

The use of these is shown in the following calculation:

Lz(L± |l,m〉) = (L±Lz + [Lz, L±]) |l,m〉 (94)

= (L±Lz ± ~L±) |l,m〉 (95)

= ~(m± 1)(L± |l,m〉) (96)

We conclude that L± |l,m〉 is an eigenstate of Lz with eigenvalue m±1. In addition, since [L2, L±] =
0, the state L± |l,m〉 still has eigenvalue l, and so we conclude that it must be proportional to
|l,m± 1〉. The normalization can be shown to be

L± |l,m〉 = ~
√
l(l + 1)−m(m± 1) |l,m± 1〉 (97)

In addition, L2 − L2
z = L2

x + L2
y is semi-positive definite (has non-negative real eigenvalues),

and these ladder operators change the eigenvalue of Lz by one while keeping the eigenvalue of L2

fixed. Thus it must be that at some point applying L+ or L− gives zero: no state at all! Indeed,
L+ |l, l〉 = 0 and L− |l,−l〉 = 0, which agrees with the normalization statement above.

3.2 Spin Angular Momentum Evidence for spin was displayed in the Stern-Gerlach exper-
iment, in which silver atoms were passed through a non-uniform magnetic field and detected on a
screen. The beam of atoms was split in two, showing that the atoms have an intrinsic magnetic mo-
mentum, related to what is now called spin angular momentum, or simply spin. Two distinct spots
were observed on the screen, in contrast to a continuous smear predicted classically, suggesting that
spin is quantized.

There is no evidence that particles have spin in the nonrelativistic theories, suggesting that
this quantity is a purely relativistic effect. In the Schrödinger equation we make the association

H = p2

2m , but this is only valid for small p! To make a relativistic theory, time and space should

be on equal footing. Using the relativistic equation E2 = (mc2)2 + (pc)2 and associating E ↔ i~ ∂
∂t

and p↔ −i~∇, we arrive at the Klein-Gordan equation:[
1

c2

∂2

∂t2
−∇2 +

(mc
~

)2
]
ψ = 0 (98)
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This, however, does not concern us here. One may also try using E =
√

(mc2)2 + (pc)2 , but
square roots of operators are not so nice. With some fiddling one may write this, with the same
associations, as(

α · pc+ βmc2
)
ψ = i~

∂

∂t
ψ {αi, αj} = 2δij {β, αi} = 0 β2 = 1 (99)

where {A,B} = AB + BA is the anticommutator. Clearly the constraints on α and β cannot be
met if they are complex numbers. However, matrices do the trick, implying that ψ is a matrix as
well. Further analysis of this equation reveals that it describes particles with an intrinsic angular
momentum of 1

2 : relativistic quantum mechanics predicts particle spin! Similarly, the Klein-Gordon
equation has been found to describe spin-0 particles.

The so-called Pauli matrices are handy for continuing a discussion of the Dirac equation, and
come in handy when considering spin-1

2 particles:

σ1 = σx =

[
0 1
1 0

]
σ2 = σy =

[
0 −i
i 0

]
σ3 = σz =

[
1 0
0 −1

]
(100)

These are a set of three Hermitian, 2× 2 matrices which satisfy the required properties above:

detσi = −1 trσi = 0 {σi, σj} = 2δijI2 [σi, σj ] = 2iεijkσ
k (101)

where I2 is the identity matrix and {A,B} = AB + BA is the anticommutator. Each has a set of
orthonormal eigenvectors:

ψx+ =
1√
2

[
1
1

]
ψy+ =

1√
2

[
1
i

]
ψz+ =

[
1
0

]
(102)

ψx− =
1√
2

[
1
−1

]
ψy− =

1√
2

[
1
−i

]
ψz− =

[
0
1

]
(103)

Define the spin operator S = ~
2σ. Using the properties of the Pauli matrices we see that the

components of S satisfy the commutation relations of an angular momentum: [Si, Sj ] = i~εijkSk.
This explains the terminology “orbital angular momentum” and “spin angular momentum” to
distinguish L and S. Their sum is also an angular momentum and is denoted J = L+ S.

So-called spinors form a basis for S2 and Sz:

|↑〉 =

[
1
0

]
|↓〉 =

[
0
1

]
(104)

These obviously satisfy the following:

S2 |↑〉 =
3~2

4
|↑〉 S2 |↓〉 =

3~2

4
|↓〉 (105)

Sz |↑〉 =
~
2
|↑〉 Sz |↓〉 = −~

2
|↓〉 (106)

These are eigenstates of the z-component of spin. What are the possible values of the x-component
of spin for |↑〉?

|↑〉 =

[
1
0

]
=

1

2

[
1
1

]
+

1

2

[
1
−1

]
=

1√
2

(
ψx+ + ψx−

)
(107)

We see that it is equally likely to measure the x-component of the spin to be +~
2 as −~

2 .
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Suppose we have a two particle system with Hamiltonian

H = −aS1 · S2, (108)

describing a spin interaction. A good method of attack is to rewrite the dot product in a convenient
way. Introduce S = S1 + S2, so that

S2 = S2
1 + S2

2 + 2S1 · S2 (109)

This allows us to write the Hamiltonian as

H = −a
2

(
S2 − S2

1 − S2
2

)
(110)

The values of S2
i are fixed because these are simply inherent properties of the particles. Writing

S2 |s〉 = s(s+ 1) |s〉, the possible values for s are {|s1 − s2|, . . . , s1 + s2}. The ground state will the
the value for s which minimizes the energy:

Egs = −a
2

[
(s1 + s2)(s1 + s2 + 1)− s1(s1 + 1)− s2(s2 + 1)

]
(111)

Such addition of angular momenta tricks work because S = S1 +S2 still satisfies the algebra that
defines an angular momentum.

4 Wavefunction Symmetries

Consider a two-particle state whose constituents are indistinguishable: interchanging the particles
should have no effect on any observables. Define the “swapping” operator, Σ, by

ΣΨ(α, β) = Ψ(β, α) (112)

where α and β characterize the quantum states of the two identical particles. Clearly, we have

ΣΣΨ(α, β) = Ψ(α, β) =⇒ Σ2 = I (113)

From these properties we see that Σ has eigenvalues 1 and −1. A general eigenstate is of the form

ΨS(α, β) =
1√
2

[
ψ1(α)ψ2(β) + ψ1(β)ψ2(α)

]
(114)

ΨA(α, β) =
1√
2

[
ψ1(α)ψ2(β)− ψ1(β)ψ2(α)

]
(115)

where S and A label the wavefunctions as symmetric or antisymmetric. These satisfy

ΣΨS(α, β) = ΨS(α, β) ΣΨA(α, β) = −ΨA(α, β) (116)

Note, however, that the squares of ψS and ψA, or probability densities, do not change upon particle
exchange: the particles are indistinguishable. One consequence of the antisymmetric wavefunction
is that if x1 = x2 the probability density vanishes, seemingly describing particles which cannot
be in the same place: this is a manifestation of the Pauli exclusion principle. Bosons, described
by a symmetric wavefunction, have integral spin and do not follow the Pauli exclusion principle.
Fermions, described by an antisymmetric wavefunction, have half-integral spin and follow the Pauli
exclusion principle.
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5 Time-Independent Non-Degenerate Perturbation Theory

If we have a Hamiltonian which is very close to one that we are able to solve exactly, we expect
the solutions to not differ from these by much. We would like to solve

H |n〉 = En |n〉 H = H0 + λH ′ (117)

The constant λ is a placeholder that eventually will be set to one. It serves to keep track of the
order of each term. We assume that we have a basis

∣∣n(0)
〉

satisfying

H0 |n(0)〉 = E(0)
n |n(0)〉 , (118)

and write both |n〉 and En as series expansions:

|n〉 = |n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ · · · (119)

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · (120)

The task then is to find expressions for |n(k)〉 and E
(k)
n . Substitute these two expressions into the

original eigenvalue problem:

(H0 + λH ′)
(
|n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ · · ·

)
(121)

=
(
E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

)(
|n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ · · ·

)
(122)

Collecting powers of λ,

H0 |n(0)〉+ λ
(
H0 |n(1)〉+H ′ |n(0)〉

)
+ · · · (123)

= E(0)
n |n(0)〉+ λ

(
E(0)
n |n(1)〉+ E(1)

n |n(0)〉
)

+ · · · (124)

The zeroth-order term reproduces what we already know:

H0 |n(0)〉 = E(0)
n |n(0)〉 (125)

To gain information from the first-order, multiply on the left by 〈n(0)|. This gives:

〈n(0)|H0|n(1)〉+ 〈n(0)|H ′|n(0)〉 = 〈n(0)|E(0)
n |n(1)〉+ 〈n(0)|E(1)

n |n(0)〉 (126)

E(0)
n 〈n(0)|n(1)〉+ 〈n(0)|H ′|n(0)〉 = E(0)

n 〈n(0)|n(1)〉+ E(1)
n 〈n(0)|n(0)〉 (127)

〈n(0)|H ′|n(0)〉 = E(1)
n (128)

This expresses the first-order correction to the energy in terms of only the perturbing Hamiltonian
and the unperturbed states! Now multiply on the left by 〈m(0)| instead, with m 6= n:

〈m(0)|H0|n(1)〉+ 〈m(0)|H ′|n(0)〉 = 〈m(0)|E(0)
n |n(1)〉+ 〈m(0)|E(1)

n |n(0)〉 (129)

E(0)
m 〈m(0)|n(1)〉+ 〈m(0)|H ′|n(0)〉 = E(0)

n 〈m(0)|n(1)〉+ E(1)
n 〈m(0)|n(0)〉 (130)

〈m(0)|n(1)〉 =
〈m(0)|H ′|n(0)〉
E

(0)
n − E(0)

m

(131)
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Since |m(0)〉 form a complete set, this gives

|n(1)〉 =
∑
m6=n

|m(0)〉 〈m(0)|n(1)〉 =
∑
m6=n

〈m(0)|H ′|n(0)〉
E

(0)
n − E(0)

m

|m(0)〉 (132)

Notice that due to the denominator above, we run into trouble if we have degenerate energy states
in the unperturbed system. A similar analysis shows that the second-order correction to the energy
is

E(2)
n =

∑
m6=n

∣∣ 〈m(0)|H ′|n(0)〉
∣∣2

E
(0)
n − E(0)

m

(133)

If both the unperturbed and perturbing Hamiltonians have the same parity, then the parity of
the eigenstates will be unchanged when applying this procedure.

As an example, consider a harmonic oscillator with perturbing Hamiltonian

H ′ = V0

(
2mω
~
)2
x̂4 (134)

As in most cases for the harmonic oscillator, it is much cleaner to work with the ladder operators.
Rewrite the perturbation as

H ′ = V0

(
a+ a†

)4
(135)

Following the prescription above, the first-order correction to the energy is

E(1)
n = V0 〈n|

(
a+ a†

)4|n〉 (136)

Since only terms with an equal number of raising and lowering operators will be nonzero, we have

E(1)
n = V0 〈n|a2a†2 + aa†aa† + aa†2a+ a†a2a† + a†aa†a+ a†2a2|n〉 (137)

= V0

[
(n+ 1)(n+ 2) + (n+ 1)2 + n(n+ 1) + n(n+ 1) + n2 + n(n− 1)

]
〈n|n〉 (138)

= 3V0

(
2n2 + 2n+ 1

)
(139)

6 Hydrogen

6.1 Non-Relativistic Solution Consider a central potential for a two-particle system, which
gives the following Schrödinger equation:[

− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + U(|r1 − r2|)
]
ψ(r1, r2) = Eψ(r1, r2) (140)

Making a change of variables to R, the center of mass, and r the vector between the two particles,
this becomes [

− ~2

2M
∇2
R −

~2

2µ
∇2
r + U(r)

]
ψ(R, r) = Eψ(R, r) (141)

where M = m1 +m2 is the total mass and µ = m1m2
m1+m2

is the reduced mass. Separation of variables
gives

− ~2

2M
∇2φ(R) = ERφ(R)

[
− ~2

2µ
∇2 + U(r)

]
ψ(r) = Erψ(r) (142)

These describe the freely-moving center of mass and a single particle moving in a static potential,
respectively. By going into a frame in which the center of mass is stationary, we may assume that
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a two-particle system may be described completely by an effective one-particle system with mass
µ. In the case of the Coulomb potential, U(r) = Ze2

r , separation of variables leads to the solutions

ψnlm(r, θ, φ) =

√(
2

na0

)3 (n− l − 1)!

2n(n+ l)!
ρle−ρ/2L2l+1

n−l−1(ρ)Y m
l (θ, φ) (143)

ρ =
2r

na0
En = −µe

4

2~2

1

n2
≈ −13.6 eV

n2
(144)

where a0 = ~2
mee2

is the Bohr radius, Lαk are generalized Laguerre polynomials and Y m
l are spherical

harmonics. The three quantum numbers may be:

n ∈ {1, 2, 3, . . .} l ∈ {0, 1, . . . , n− 1} m ∈ {−l, . . . , l} (145)

This would imply that the degeneracy of the nth level is
∑n−1

l=0 (2l + 1) = n2; the inclusion of spin
bumps this up to a degeneracy of 2n2.

Often one will only need the radial portion of a solution, which is

Rnl(r) ∝ ρle−ρ/2L2l+1
n−l−1(ρ) (146)

and goes as Rnl ∼ ρl near the origin. Often the ground state, (n, l,m) = (1, 0, 0), suffices and this
is given by

ψ100(r, θ, φ) =
1√
πa3

0

e−r/a0 (147)

Considering Hydrogen-like atoms (one electron, Z protons) changes the energy levels to

En(Z) = −µZ
2e4

2~2

1

2
= −13.6 eV

Z2

n2
= Z2En(1) (148)

The important proportionalities are summarized by

En(Z) ∝ µZ2

n2
(149)

Another expression for the energy levels of Hydrogen is

En = −1

2
mc2α2 1

n2
α =

1

4πε0

e2

~c
≈ 1

137
(150)

where α is known as the fine structure constant. Relativistic corrections give terms proportional
to α4, plus higher-order terms.

A common question involves positronium, the bound state of and electron and positron pair.
Everything above holds except for the energy levels, stemming from the change to the reduced
mass. Since the mass of a positron is the same as that of an electron, we have

µ =
meme

me +me
=
me

2
(151)

This means that energy levels are shifted by a factor of two. In particular, the ground state energy
is −6.8 eV instead of −13.6 eV for Hydrogen.
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6.2 Fine Structure The fine structure in the Hydrogen energy spectrum arises through con-
sidering relativistic corrections and interactions between the spin angular momentum and the orbital
angular momentum, aka spin-orbit coupling. This may be treated using perturbation theory, and
gives a correction to the energy of

∆Enj = −1

2
mc2α4 1

n4

(
n

j + 1
2

− 3

4

)
= −2E2

n

mc2

(
n

j + 1
2

− 3

4

)
j =

∣∣l ± 1
2

∣∣ (152)

Notice that this always lowers the energy.

7 Special Functions

7.1 Hermite Polynomials The Hermite polynomials arise when solving the Schrödinger
equation for a one-dimensional harmonic oscillator. The are the solutions to the following differen-
tial equation:

f ′′(x)− 2xf ′(x) + 2nf(x) = 0 (153)

The solutions, Hn, are orthogonal with respect to the weight function e−x
2
:∫ ∞

−∞
e−x

2
Hn(x)Hm(x) dx =

√
π 2nn!δnm (154)

The first few are:

H0(x) = 1 H1(x) = 2x H2(x) = 4x2 − 2 H3(x) = 8x3 − 12x (155)

Notice that they have definite parity.

7.2 Spherical Harmonics Spherical harmonics arise when solving the Schrödinger equation
in spherical coordinates with a spherically symmetric potential, V (r). Separation of variables gives
the differential equations

m2 = − 1

Φ

d2Φ

dφ2
=

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ l(l + 1) sin2 θ, (156)

of which Y m
l (θ, φ) = Θm

l (θ)Φm(φ) are solutions. They take the form

Y m
l (θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (157)

where Pml are the associated Legendre polynomials. Notice that the only φ dependence is eimφ.
The normalization is such that they are orthonormal over the sphere:∫

4π
Y m∗
l Y m′

l′ dΩ = δll′δmm′ (158)

The first few (good to know up to normalization) are:

Y 0
0 (θ, φ) =

√
1

4π
Y 0

1 (θ, φ) =

√
3

4π
cos θ (159)
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Y −1
1 (θ, φ) =

√
3

8π
sin θe−iφ Y 1

1 (θ, φ) = −
√

3

8π
sin θeiφ (160)

These functions are eigenfunctions of both L2 and Lz:

L2Y m
l (θ, φ) = ~2l(l + 1)Y m

l (θ, φ) LzY
m
l (θ, φ) = ~mY m

l (θ, φ) (161)

Notice that if a wavefunction is proportional to sin θ sinφ or sin θ cosφ, then it is a linear combina-
tions of l = 1 spherical harmonics:

sin θ sinφ = i

√
2π

3

(
Y 1

1 + Y −1
1

)
sin θ cosφ =

√
2π

3

(
Y 1

1 − Y −1
1

)
(162)
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A Summary

p =
h

λ
(de Broglie Wavelength)

Kmax = hν −W = eVstop (Photoelectric Effect)

Operators

〈A〉 = 〈A|Ψ〉 =

∫
Ψ∗Aψ dr (Expected Value)

d

dt
〈A〉 =

1

i~
〈[A,H]〉+

〈
∂A

∂t

〉
(Ehrenfest Theorem)

pi = −i~ ∂

∂xi
(Momemtum Operator)

T =
p · p
2m

= − ~2

2m
∇2 (Kinetic Energy)

Lz = −i~ ∂

∂φ
(Angular Momentum)

H = T + V (x) = − ~2

2m
∇2 + V (x) (Nonrelativistic Hamiltonian)

a =

√
mω

2~

(
x+

ip

mω

)
=

√
mω

2~

(
x+

~
mω

∂

∂x

)
(Harmonic Oscillator)

a† =

√
mω

2~

(
x− ip

mω

)
=

√
mω

2~

(
x− ~

mω

∂

∂x

)
H = ~ω

(
N +

1

2

)
= ~ω

(
a†a+

1

2

)
[xi, pj ] = i~δij (Cannonical coordinates)

[f(x), px] = i~f ′(x) (Function of position)

[x, g(px)] = i~g′(px) (Function of momentum)

[Li, Lj ] = i~εijkLk (Angular momentum)

[L2, Li] = 0

[a, a†] = 1 (Ladder Operators)

[N, a] = −a
[N, a†] = a†

One-Dimensional Potentials

ψn(x) =

√
2

L
sin
(nπx
L

)
En =

~2π2n2

2mL2
n ∈ {1, 2, 3, . . .} (Infinite square well)

R =

(
k1 − k2

k1 + k2

)2

T =
4k1k2

(k1 + k2)2
(Step: E > V0)

T =

[
1 +

V 2
0 sin2 (k2L)

4E(E − V0)

]−1

(Finite Barrier: E > V0)
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T =

[
1 +

V 2
0 sinh2 (k2L)

4E(V0 − E)

]−1

(Finite Barrier: E < V0)

ψ(x) =
√

Λ e−Λ|x| Λ =
mβ

~2
V (x) = −βδ(x) (Delta Well Bound State)

ψn(x) =
1√

2nn!
4

√
mω

π~
Hn(ξ)e−ξ

2/2 ξ =

√
mω

~
x (Harmonic Oscillator)

En = ~ω
(
n+ 1

2

)
n ∈ {0, 1, 2, . . .}

|n〉 =
(a†)n√
n!
|0〉 a |0〉 = 0

a =

√
mω

2~

(
x+

ip

mω

)
a† =

√
mω

2~

(
x− ip

mω

)
x =

√
~

2mω

(
a† + a

)
p = i

√
~mω

2

(
a† − a

)
Angular Momentum & Spin

L2 |l,m〉 = ~2l(l + 1) |l,m〉 (Eigenvalue Expressions)

Lz |l,m〉 = ~m |l,m〉

L± |l,m〉 = ~
√
l(l + 1)−m(m± 1) |l,m± 1〉 (Ladder Operators)

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(Pauli Matrices)

σ2
i = I2 detσi = −1 trσi = 0

{σi, σj} = 2δijI2 [σi, σj ] = 2iεijkσ
k

A ·B =
1

2

(
C2 −A2 −B2

)
C ≡ A+B (The “Trick”)

Time-Independent Non-Degenerate Perturbation Theory

E(1)
n = 〈n(0)|H ′|n(0)〉 (1st-order energy correction)

|n(1)〉 =
∑
k 6=n

〈k(0)|H ′|n(0)〉
E

(0)
n − E(0)

k

|k(0)〉 (1st-order eigenstate correction)

E(2)
n =

∑
k 6=n

| 〈k(0)|H ′|n(0)〉 |2

E
(0)
n − E(0)

k

(2d-order energy correction)
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