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1 Nuclear & Particle Physics

1.1 Radioactive Decay Decay processes are probabilistic in nature, and so one can safely
suppose that the rate of decay is proportional to the number of states available to decay:

dN

dt
= −γN (1)

The solution to this is
N(t) = N0e

−γt = N0e
−t/τ = N02

−t/t1/2 (2)

γ is the decay rate, τ is the mean lifetime and t1/2 is the half-life. They are related to each other
by

τ =
1

γ
=

t1/2

log 2
(3)

After each half-life one expects half of a sample to have decayed.

1.2 Fission & Fusion Fission is the process through which nuclei split into smaller pieces.
Unstable isotopes spontaneous undergo fission, and some may be excited through collisions to split.
Uranium-235 bombarded by neutrons may undergo the fission reaction

n+ 235
92U −→ 141

56Ba + 92
36Kr + 3n (4)

Because of the increase in the number of free neutrons, this leads to a cascade and the release of a
large amount of energy.

Fusion is the opposite process, where nuclei combine to release energy. The binding energy
per nucleon increases through the periodic table up until iron, at which the fusion process is not
energetically favorable.

An important fusion process is the proton-proton chain reaction which is the first step in solar
fusion. Protons fuse to form deuterium and then Helium-3. The steps are

1H + 1H −→ 2He + γ (5)
2He −→ 2H + e+ + νe (6)

2H + 1H −→ 3He + γ (7)

From here there are several possibilities:

• Branch I.
3He + 3He −→ 4He + 2 · 1H (8)

• Branch II.

3He + 4He −→ 7Be + γ (9)
7Be + e− −→ 7Li + νe (10)
7Li + 1H −→ 2 · 4He (11)

• Branch III.

3He + 4He −→ 7Be + γ (12)
7Be + 1H −→ 8B + γ (13)

8B −→ 8Be + e+ + νe (14)
8Be −→ 2 · 4He (15)
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Symbol Antiparticle Charge (e)

up u ū +2/3
down d d̄ −1/3

charm c c̄ +2/3
strange s s̄ −1/3

top t t̄ +2/3
bottom b b̄ −1/3

Figure 1: Three generations of quarks.

1.3 Elementary Particles The broadest classification of particles is into bosons (integral
spin) and fermions (half-integral spin). Elementary fermions are categorized further into quarks
and leptons. There are lepton numbers associated with each generation, and these quantities are
conserved. For example, both electrons and electron neutrinos have electronic number Le = 1,
while their antiparticles have Le = −1; all other particles have Le = 0. In addition, antiparticle
have the opposite sign for electric charge. One might imagine that since there is a conservation law
for each generation of leptons that there would be a conservation law for each generation of quarks,
i.e. upness and strangeness are conserved. However, this is not the case, and processes such as

Λ→ p+ + π− Λ = uds p+ = uud π− = ud (16)

are observed. Here the “underlying process” here is the conversion of a strange quark into an
up/anti-up quark pair and one down quark.

Each quark may come in one of three colors: red, green or blue. Color confinement is an expla-
nation as to why isolated quarks are not observed: states must overall be “colorless”. Composite
particles known as hadrons form what was sarcastically called the “particle zoo” before the dis-
covery of their quark building blocks. Hadrons consists of baryons, made from three quarks, and
mesons, made from a quark and antiquark. An emphasized particle is the J/ψ meson, which has
quark content cc̄. It provided the first strong evidence that the current three-quark model (only u,
d and s) was incomplete.

Symbol Antiparticle Charge (e)

electron e− e+ −1
electron neutrino νe ν̄e 0

muon µ− µ+ −1
muon neutrino νµ ν̄µ 0

tau τ− τ+ −1
tau neutrino ντ ν̄τ 0

Figure 2: Three generations of leptons.

1.4 Symmetries Noether’s theorem states that symmetries of a Lagrangian correspond to con-
served quantities. There are two broad categories: continuous and discrete symmetries. Continuous
symmetries include translations and rotations.

Three common discrete symmetries are charge conjugation, parity and time reversal, often
referred to as C, P and T . Charge conjugation involves reversing the signs of all internal quantum
numbers but keeping mass, energy, momentum and spin untouched. Parity changes the handedness
of the coordinate system. Time reversal sends t → −t. The strong and electromagnetic forces are
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Symbol Antiparticle Charge (e) Spin Interaction

photon γ self 0 1 Electromagnetism
W± boson W± W∓ ±1 1 Weak interaction
Z boson Z self 0 1 Weak interaction
gluon g self 0 1 Strong interaction
Higgs boson H0 self 0 0 Mass
graviton G self 0 2 Gravitation

Figure 3: Gauge bosons, along with the Higgs boson and theorized graviton.

invariant under any one of C, P or T . It was assumed that all interactions are unchanged under
these operations, but it was found that the weak force does not obey charge conjugation: only
left-handed neutrinos and right-handed antineutrinos interact through the weak force. While the
weak force seems to obey the combination CP at first glance, this higher symmetry is violated by
kaon decay. It is strongly believed that all processes, however, are invariant under CPT .

Symmetry Conserved Quantity

Time translation Energy
Spacial translation Linear momentum

Spacial rotation Angular momentum
Gauge transformation A charge, e.g. electric charge

2 Condensed Matter

2.1 Crystal Structure Atoms in a crystalline structure form a regular pattern which may
be characterized into several categories known as Bravais lattices. In three dimensions there are 14
Bravais lattices, often depicted by its unit cell, which come in several “types”:

• Primitive: lattice points are only on the cell corners.

• Body-Centered: lattice points are on the cell corners and there is an additional point at the
center of the cell.

• Face-Centered: lattice points are on the cell corners and there is an additional point at the
center of each of the faces.

• Base-Centered: lattice points are on the cell corners and there is an additional point at the
center of two opposite faces.

The primitive cell for a Bravais lattice has a number density of one. The volume of the primitive
cell is the volume of the unit cell divided by its number density. Lattice points on the faces, edges
and vertices are “shared” with adjacent cells. So, for example, a cube with lattice points only at
its vertices has number density one and so is primitive.

2.2 X-Ray Diffraction Light incident on a regular lattice will interact with the atoms in
the lattice and produce diffraction patterns. In order to obtain a maximum in intensity the path
length taken must differ by an integer multiple of the wavelength. With interatomic distances d and
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incident angle θ (measured from the plane of the crystal), the points of constructive interference
occur where

2d sin θ = nλ n ∈ {1, 2, 3, . . .} (17)

Figure 4: Bragg diffraction geometry

2.3 Semiconductors In materials with many atoms the electronic energy levels are warped
from their clean, isolated-atom form to create energy bands. In a semiconductor the filled states
and conducting states are separated by an energy gap that prohibits conduction unless an electron
is promoted after absorbing the energy of a photon. The resistance of a semiconductor decreases
as its temperature increases, as the increased thermal energy is more readily able to promote
electrons to the conduction band. This is in contrast to metals, for which the resistance increases
with increasing temperature.

The process of doping consists of introducing impurities to the semiconductor to increase the
number of charge carriers. Adding electron donors results in a net negative charge and is called
“n-type”, and adding electron acceptors results in a net positive charge and is called “p-type”.

2.4 Superconductors At low enough temperatures the electrical resistance of many materials
drops exactly to zero; this is the phenomenon known as superconductivity. The point at which
the resistance jumps quickly to zero is known as the critical temperature. With no resistance
current will flow indefinitely even with no power source. Magnetic fields are expelled from the
superconductor; this is the Meissner effect.

BCS theory explains the macroscopic phenomenon of superconductivity by supposing that elec-
trons form what are known as Cooper pairs. At low enough temperatures two electrons may con-
dense into a bosonic bound state, and these bosons are no longer restricted by the Pauli exclusion
principle.

3 Mathematics

3.1 Curvilinear Coordinate Systems The notation Sx = sinx and Cx = cosx is used in
the following table. Polar coordinates are cylindrical with the restriction z = 0, where the relevant
measure is the area, given by dA = r drdθ.
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Cylindrical Spherical

Distance Element ds = dr r̂ + r dθ θ̂ + dz ẑ ds = dr r̂ + r dθ θ̂ + r sin θ dφφ̂
Volume Element dV = r drdθdz dV = r2 sin θ drdθdφ

Unit Vectors

r̂θ̂
ẑ

 =

 Cφ Sφ 0
−Sφ Cφ 0

0 0 1

 ı̂̂
k̂

 r̂θ̂
φ̂

 =

SθCφ SθSφ Cθ
CθCφ CθSφ −Cθ
−Sφ Cφ 0

 ı̂̂
k̂


Kinetic Energy 1

2m
(
ṙ2 + r2φ̇2 + ż2

)
1
2m
(
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

)
3.2 Vector Differential Operators

Gradient
∇f = ∂f

∂x ı̂+ ∂f
∂y ̂+ ∂f

∂z k̂

∇f = ∂f
∂r r̂ + 1

r
∂f
∂θ θ̂ + ∂f

∂z ẑ

∇ ∇f = ∂f
∂r r̂ + 1

r
∂f
∂θ θ̂ + 1

r sin θ
∂f
∂φ φ̂

Divergence
∇ · F = ∂Fx

∂x +
∂Fy
∂y + ∂Fz

∂z

∇ · F = 1
r
∂
∂r

(
rFr
)

+ 1
r
∂Fθ
∂θ + ∂Fz

∂z

∇· ∇ · F = 1
r2

∂
∂r

(
r2Fr

)
+ 1

r sin θ
∂
∂θ

(
sin θ Fθ

)
+ 1

r sin θ
∂Fφ
∂φ

Curl
∇× F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
∇× F = 1

r

∣∣∣∣∣∣
r̂ rθ̂ ẑ
∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

∣∣∣∣∣∣
∇× ∇× F = 1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣
Laplacian

∇2f = ∂2f
∂x2

+ ∂2f
∂y2

+ ∂2f
∂z2

∇2f = 1
r
∂
∂r

(
r ∂f∂r

)
+ 1

r2
∂2f
∂θ2

+ ∂2f
∂z2

∇2 =∇ ·∇ ∇2f = 1
r2

∂
∂r

(
r2 ∂f∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂f∂θ

)
+ 1

r2 sin θ
∂2f
∂φ2

These vector operators satisfy several identities:

∇× (∇f) = 0 (18)

∇ · (∇× F ) = 0 (19)

∇× (∇× F ) =∇(∇ · F )−∇2F (20)

The Helmholtz decomposition theorem states that a sufficiently smooth vector field may be
written as the sum of a gradient and a curl:

F = −∇Φ +∇×M (21)

In particular, if F is divergence-free, then it may be written

F =∇×M (22)

and if F is curl-free, then it may be written

F = −∇Φ (23)
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3.3 Fourier Series Periodic functions may be decomposed into a sum of sines and cosines.
Assuming a period of 2π for a function f , we have the decomposition

f(x) =
a0
2

+
∞∑
n=1

(
an cosnx+ bn sinnx

)
(24)

am =
1

π

∫ 2π

0
f(x) cosmxdx m ∈ {0, 1, 2, . . .} (25)

bk =
1

π

∫ 2π

0
f(x) sin kx dx k ∈ {1, 2, 3, . . .} (26)

Some common examples of Fourier series are given below:

Square Wave f(x) = 4
π

∑
n odd

1
n sinnx

Saw-Tooth f(x) = 1
2 −

1
π

∞∑
n=1

1
n sinnx

Triangle Wave f(x) = 8
π2

∑
n odd

(−1)(n−1)/2

n2 sinnx

Things to look for:

• Parity: Is the expression even or odd?

• Special values: Where is the sum obviously zero, positive or negative?

• Translational symmetry: If the function is shifted does it flip parity?

• Convergence rates: If the (k − 1)th derivative is continuous and the kth derivative is discon-
tinuous then the coefficients go as an ∼ 1

nk+1 .

3.4 Matrix Algebra Matrices provide a convenient way to solve coupled systems and differ-
ential equations. In addition, one formulation of Quantum mechanics is matrix mechanics, in which
particle states are represented by matrices. It is equivalent to the Schrödinger wave formulation,
but provides a different mechanism for solving problems.

The determinant of a matrix a useful tool for linear algebra. Up to a sign it represents the n-
volume of the parallelepiped determined by the columns or rows (viewed as vectors in Rn). There
are several ways to compute a determinant for a square matrix, including expansion by minors and
summing over permutations. In the case of 2× 2 matrices it is particularly straightforward:

det

[
a11 a12
a21 a22

]
= a11a22 − a12a21 (27)
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Determinants are multiplicative, so that detAB = detAdetB. In particular, detA−1 = 1
detA . A

matrix has an inverse iff its determinant is nonzero. In the 2× 2 case the inverse of a matrix is

A−1 =

[
a11 a12
a21 a22

]−1
=

1

detA

[
a22 −a12
−a21 a11

]
(28)

Another useful function is the trace, which is the sum of the diagonal elements. It is not
multiplicative, but is additive and cyclic, so that

tr(A+B) = tr(A) + tr(B) tr(ABC) = tr(BCA) = tr(CAB) (29)

These two functions show their use when considering the eigenvalue expression AX = λX.
Rearranging gives (λI − A)X = 0. If λI − A has an inverse, then we may multiply both sides by
(λI− A)−1 to arrive at X = 0. Since this is boring and obviously a solution, we consider the case
where λI−A is not invertable. This occurs exactly when det(λI−A) = 0. This gives a polynomial
in λ with coefficients determined by the elements in A: the characteristic polynomial for A, whose
roots are the eigenvalues of A.

det(λI−A) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A) (30)

On the other hand, if the polynomial has roots {λi}, counting multiplicities, we have the factoriza-
tion

det(λI−A) = (λ− λ1)(λ− λ2) · · · (λ− λn) (31)

= λn − (λ1 + · · ·+ λn)λn−1 + · · ·+ (−1)n(λ1 · · ·λn) (32)

Comparing these two approaches shows that we have

detA =

n∏
i=1

λi trA =

n∑
i=1

λi (33)

Again, in the 2 × 2 case this proves to be quite useful. Denoting the two eigenvalues of A by λ±,
we have

λ+λ− = detA λ+ + λ− = trA =⇒ λ± = trA
2 ±

√(
trA
2

)2 − detA (34)
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A Summary

Radioactive Decay

dN

dt
= −γN (Exponential Decay)

N(t) = N0e
−γt = N0e

−t/τ = N02
−t/t1/2

τ =
1

γ
=

t1/2

log 2

X-Ray Diffraction

2d sin θ = nλ n ∈ {1, 2, 3, . . .} (Bragg Diffraction)

Vector Differential Operators

∇f =
∂f

∂x
ı̂+

∂f

∂y
̂+

∂f

∂z
k̂ (Gradient)

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(Divergence)

∇× F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ =

(
∂Fz
∂y
− ∂Fy

∂z

)
ı̂+

(
∂Fx
∂z
− ∂Fz

∂x

)
̂+

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ (Curl)

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(Laplacian)

Fourier Series

f(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) (Fourier Series)

am =
1

π

∫ 2π

0
f(x) cosmxdx m ∈ {0, 1, 2, . . .}

bk =
1

π

∫ 2π

0
f(x) sin kx dx k ∈ {1, 2, 3, . . .}

Matrix Algebra

trA =
∑
i

aii =
∑
i

λi (Trace)

detA =
∏
i

λi (Determinant)

detA2×2 = a11a22 − a12a21 (2× 2 Determinant)

A−12×2 =
1

detA

[
a22 −a12
−a21 a11

]
(2× 2 Inverse)

λ± =
trA

2
±

√(
trA

2

)2

− detA (2× 2 Eigenvalues)
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