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1 Special Relativity

1.1 Four-Vectors & Lorentz Transformations The special theory of relativity stems
from two ideas: the laws of physics are the same in any inertial frame and the speed of light in a
vacuum is the same for all observers. These two assumptions together have drastic consequences.
Space and time are now roughly on the same level, and so it is quite common to introduce a new
notion for coordinates:

xµ = (x0, x1, x2, x3) = (ct, x, y, z) xµ = ηµνx
ν = (x0, x1, x2, x3) = (ct,−x,−y,−z) (1)

The Minkowski metric, ηµν , is here given by diag (1,−1,−1,−1); some use the negative of this.
Two observers will often not agree on the order of events, lengths or times, but all observers will

agree on several things: so-called Lorentz invariants. One is, of course, the speed of light. Then
there is the spacetime interval,

ds2 = dxµdxµ = ηµνdxµdxν = c2dt2 −
(
dx2 + dy2 + dz2

)
= c2dt2 − dx2 (2)

Intervals between two events are categorized by their sign:

• Time-like (∆s2 > 0): The time component of ∆s2 dominates. There exists an inertial frame
where the two events occur at the same point in space.

• Light-like (∆s2 = 0): A photon emitted at event one would arrive at event two.

• Space-like (∆s2 < 0): The space component of ∆s2 dominates. There exists an inertial frame
where the two events are simultaneous.

Lorentz transformations are those transformations which leave the spacetime interval invariant
by transforming one inertial frame into another. This is a change of coordinates, and so is given
by

x′µ = Λµνx
ν + aµ (3)

where aµ is a constant, and to maintain the spacetime interval we require that Λ satisfy

Λµση
σρΛνρ = ηµν (4)

These include the usual spacial rotations and so-called boosts, which take a frame S into a frame
S′ moving with relative speed v. We may as well assume that the boost occurs along the x-axis
(rotate if not) and that the origins coincide at t = 0. Then spacetime coordinates in S′ are related
to those in S by

x′0

x′1

x′2

x′3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 γ =
1√

1− β2
β =

v

c
(5)

In perhaps a more familiar form, these are

t′ = γ(t− vx/c2) x′ = γ(x− vt) y′ = y z′ = z (6)

Composition of boosts along the same axis correspond to velocity addition. If an observer A
sees an observer B moving with velocity v along the x-axis, and in a Lorentz frame where B is

1



stationary there is an object C moving with velocity u along the x-axis, what velocity does A
measure C to be going? That is, if B is moving with velocity v relative to A and C is moving with
velocity u relative to B, with what velocity is C moving relative to A? The result is

v′ =
v + u

1 + vu
c2

(7)

Note that if both v and u are less than c, then so is v′. One may also express the velocity in terms
of a new parameter, θ, called the rapidity:

β = tanh θ (8)

This simplifies calculations involving velocity addition, since we have

β′ =
tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2
= tanh (θ1 + θ2) (9)

That is, rapidities add. Using this new quantity, Lorentz transformations take a simple form:
x′0

x′1

x′2

x′3

 =


cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 (10)

Expressions for momentum and energy must be altered:

p = γmv E = γmc2 (11)

For small v these are

p = mv +O(v3) E = mc2 +
1

2
mv2 +O(v4) (12)

agreeing with the nonrelativistic notions of momentum and energy. The constant term for E is
known as the rest energy. Eliminating v in their definitions shows that these relativistic quantities
satisfy

E2 = (mc2)2 + |p|2c2 (13)

This now makes sense for massless particles as well.

1.2 Time Dilation & Length Contraction From the spacetime interval we may also
construct the proper time interval:

dτ2 =
ds2

c2
= dt2 − 1

c2
(
dx2 + dy2 + dz2

)
(14)

Two events separated by a time-like interval satisfy

∆τ2 = ∆t2 − ∆x2

c2
> 0 =⇒ ∆t =

√
∆τ2 +

∆x2

c2
≥ ∆τ (15)

That is, the time interval between two events is minimized in a Lorentz frame where the two events
occur at the same point in space. This is time dilation. Any observer moving relative to a ticking
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clock will measure it to be ticking more slowly than a timepiece at their side. For an observer
moving with relative velocity v the measured time is

∆t = γ∆τ =
∆τ√
1− β2

(16)

In a similar way the relative motion dilates time, relative motion distorts lengths. A rod of
length L0 as measured at rest will be measured to have a length

L =
L0

γ
= L0

√
1− β2 (17)

if boosted in the direction of its extent. Distances are contracted along the direction of relative
motion, but orthogonal distances are unaffected.

A prime example of these effects is in atmospheric muon decay. Cosmic rays produce muons
at the top of the atmosphere, a height of about h0 = 10 km. At rest muons have a half-life of
t0 = 1.56 · 10−6 s. These muons are highly relativistic, travelling with a speed about v = 0.98c.
Naively applying non-relativistic equations predicts that only 0.3 · 10−6 = 3

107
of the produced

muons will reach the Earth’s surface: far fewer than is observed.
From the muon’s perspective the Earth is rushing up to meet it, and so the distance to the

Earth is length contracted by a factor of γ ≈ 5. The number of half-lives passing is then

t

t0
=

(h0/γ)

vt0
≈ 0.2(104 m)

(0.98 · 3 · 108 m/s)(1.56 · 10−6 s)
≈ 4.36 (18)

This means that the proportion of muons reaching the surface of the Earth is approximately 2−4.36 ≈
1

20.5 . From the perspective of an observer on the Earth, the muons are moving very quickly and
will suffer from time dilation. The muons’ internal clocks will appear to run slower by a factor of
γ ≈ 5. The number of half-lives passign is then

t

t0
=

h0
v(γt0)

≈ 4.36 (19)

The two observers agree on the number of half-lives that pass, but disagree on the reasoning that
leads to the inclusiong of a factor of five.

1.3 Simultaneity Two events that occur at the same time in one inertial frame will necessarily
be measured to occur at different times in any other inertial frame. This might seem to lead to
paradoxical situations, but all observers will agree on “absolute” characteristics of events: anything
they could meet up later and agree upon. Undoubtedly they will disagree on the explanation for
such occurrences, but the ultimate outcomes must be the same. A prime example of this is of
a ladder passing through a barn of exactly the same length with two open doors. An observer
stationary off to the side will see a length contracted ladder fit nicely within the barn. An observer
on the ladder will see a length contracted barn so that the ladder is never completely inside the
barn. Now the barn-observer quickly closes and then opens the doors when he sees the back-end of
the ladder disappear within the barn. What does the ladder-observer see? The two observers must
agree that the ladder is not hit by the doors, and so we must conclude that the ladder-observer
does not see the two doors close and open at the same time: simultaneity is lost!
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1.4 Energy & Momentum Time and space together form a 4-vector. So too do energy and
momentum:

pµ = (p0, p1, p2, p3) =
(
E
c , px, py, pz

)
pµ = ηµνp

ν = (p0, p1, p2, p3) =
(
E
c ,−px,−py,−pz

)
(20)

Invariance of Lorentz scalars gives that all observers will agree on the value of pµp
µ:

pµp
µ = ηµνp

µpν =
E2

c2
−
(
p2x + p2y + p2z

)
=
E2

c2
− |p|2 (21)

Using the above relation between E and p we see that the invariant quantity is proportional to the
rest mass:

pµp
µ = m2c2 (22)

1.5 Electromagnetism The electric potential and vector potential may be combined to form
the electromagnetic four-potential:

Aµ =
(
V
c , Ax, Ay, Az

)
=
(
V
c ,A

)
(23)

Maxwell’s equations may be expressed in terms of the electromagnetic field tensor, given by

Fµν = ∂µAν − ∂νAµ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 (24)

It transforms under Lorentz transformations as

F ′µν = ΛµσΛρ
νF σρ (25)

As seen by the components of Fµν above, these transform electric and magnetic fields into one-
another. An electric field is never completely transformed into a magnetic field for any boost, as it
would naively require boosting the source up to the speed of light: not a Lorentz transformation.
The components of the fields parallel and orthogonal to the boost transform as

E′|| = E|| E′⊥ = γ(E⊥ + v ×B⊥) (26)

B′|| = B|| B′⊥ = γ(B⊥ − v ×E⊥/c
2) (27)

For example, a boost along the x-axis gives

E′x = Ex E′y = γ(Ey − vBz) E′z = γ(Ez + vBy) (28)

B′x = Bx B′y = γ(By + vEz/c
2) B′z = γ(Bz − vEy/c2) (29)

1.6 Doppler Effect Relativistic doppler shift is

λ = λ0

√
1± β
1∓ β

f = f0

√
1∓ β
1± β

(30)

The sign is determined by whether the source is moving towards or away from the detector: if
towards then the detected frequency will be higher and the wavelength lower.
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2 General Relativity

Solving the Einstein field equations for a stationary, spherically symmetric, electrically neutral mass
distribution (boring!) gives the Schwarzchild solution. There arises a distinguished radius, known
as the Schwarzschild radius, which, for an object of mass M , is

rs =
2GM

c2
(31)

If all of the mass is concentrated within this radius then the object is a black hole.

Object Mass rs
Sun 2.0 · 1030 kg 3.0 km
Earth 6.0 · 1024 kg 8.9 mm
Mt. Everest ∼ 6.0 · 1015 kg 8.9 pm
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A Summary

Four-Vectors & Lorentz Transformations

xµ = (x0, x1, x2, x3) = (ct, x, y, z) (Four-Position)

ηµν = ηµν = diag (1,−1,−1,−1) (Minkowski Metric)

Mµ = ηµνM
ν Mµ = ηµνMν (Raising & Lowering of Indices)

ds2 = dxµdxµ = c2dt2 −
(
dx2 + dy2 + dz2

)
= c2dt2 − dx2 (Spacetime Interval)

γ =
1√

1−
(
v
c

)2 =
1√

1− β2
(Lorentz Factor)


x′0

x′1

x′2

x′3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 (Boost Along x-Axis)

v′ =
v + u

1 + vu
c2

(Colinear Velocity Addition)

p = γmv (Momentum)

E = γmc2 (Energy)

E2 = (mc2)2 + |p|2c2

pµ = (p0, p1, p2, p3) = (Ec , px, py, pz) (Four-Momentum)

pµp
µ = m2c2

Time Dilation & Length Contraction

∆t = γ∆τ (Time Dilation)

L =
L0

γ
(Length Contraction)

Electromagnetism

Aµ = (A0, A1, A2, A3) = (Vc , Ax, Ay, Az) (Four-Potential)

Fµν = ∂µAν − ∂νAµ (Electromagnetic Field Tensor)

E′x = Ex B′x = Bx (Boost Along x-Axis)

E′y = γ(Ey − vBz) B′y = γ(By + vEz/c
2)

E′z = γ(Ez + vBy) B′z = γ(Bz − vEy/c2)

Doppler Effect

λ =
c

f
= λ0

√
1± β
1∓ β

=
c

f0

√
1± β
1∓ β

(Doppler Effect)

General Relativity

rs =
2GM

c2
(Schwarzchild Radius)

6


	Special Relativity
	Four-Vectors & Lorentz Transformations
	Time Dilation & Length Contraction
	Simultaneity
	Energy & Momentum
	Electromagnetism
	Doppler Effect

	General Relativity
	Summary

