Physics GRE:

Summary

G. J. Loges ${ }^{1}$

University of Rochester
Dept. of Physics \& Astronomy

${ }^{1}$ ©Gregory Loges, 2016

Contents

1 Test-Taking 1
1.1 Strategies 1
1.2 Useful Quantities 1
1.3 Binomial Expansion 1
2 Classical Mechanics 2
3 Electromagnetism 4
4 Quantum Mechanics 6
5 Thermodynamics \& Statistical Mechanics 8
6 Atomic Physics 10
7 Optics \& Wave Phenomena 11
8 Relativity 12
9 Specialized Topics 13

1 Test-Taking

1.1 Strategies The Physics GRE subject test consist of 100 multiple-choice questions in 170 minutes. Each question has five choices; a correct response earns you one point and an incorrect response deducts a quarter of a point. Your raw score is converted to a scale in 10 point jumps out of 990 , with a median score in the mid-six-hundreds. The test covers most aspects of an undergraduate physics curriculum. While it may not be the best indicator of your ability to do well in a physics graduate program, it does show that you have your foundations covered. Doing well will only help your chances of standing out.

- Move quickly! You have fewer than two minutes per question. Some questions you will know very quickly and others will take a good five minutes to finish the calculations. Mark involved questions and come back to them later. Set a timer for the practice tests and hold yourself to it!
- Have a bunch of common constants on quick recall such as $m_{e}=0.5 \mathrm{MeV} / \mathrm{c}^{2}$ and $h c=$ 1240 eV nm . Also, estimate like crazy when you can. If the five answers span many orders of magnitude chop everything down to one significant figure and go from there.
- Use dimensional analysis and limiting cases to narrow down the choices.
- Answer questions, even if you are not sure. Taking a random guess has an expected value of zero, and if you can eliminate one or more options then guessing is likely to be worthwhile.
1.2 Useful Quantities While there is a list of constants at the beginning of the test, it is useful to have a collection of common quantities available for quick use.

Name	Symbol	Approximate Value
Speed of light	c	$3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
Electric charge	e	$1.6 \cdot 10^{-19} \mathrm{C}$
Electron mass	m_{e}	$0.5 \mathrm{MeV} / \mathrm{c}^{2}$
Proton mass	m_{p}	$940 \mathrm{MeV} / \mathrm{c}^{2}$
Proton/Electron mass ratio	m_{p} / m_{e}	1800
Hydrogen ground state energy	E_{1}	-13.6 eV
-	$h c$	1240 eV nm
Fine structure constant	$\alpha=\frac{1}{4 \pi \epsilon \varrho} \frac{e^{2}}{\hbar c c}$	$\frac{1}{137}$
Bohr radius	$a_{0}=\frac{h}{m_{e} c \alpha}$	$0.53 \AA$
Electron Compton wavelength	$\lambda_{\mathrm{C}}=\frac{h}{m_{e} c}$	0.0024 nm
Visible spectrum wavelengths	-	$400-700 \mathrm{~nm}$
Room temperature thermal energy	$k T_{\text {room }}$	$\frac{1}{40} \mathrm{eV}$

1.3 Binomial Expansion For integral powers we may expand binomials as

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{1}
\end{equation*}
$$

β	0	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{\sqrt{3}}{2}$	$\frac{9}{10}$	$\frac{12}{13}$	$\frac{95}{100}$	$\frac{98}{100}$	$\frac{99}{100}$	$\frac{995}{1000}$	$\frac{999}{1000}$
	0	0.5	0.6	0.8	0.87	0.9	0.92	0.95	0.98	0.99	0.995	0.999
γ	1	$\frac{2}{\sqrt{3}}$	$\frac{5}{4}$	$\frac{5}{3}$	2	$\frac{10}{\sqrt{19}}$	$\frac{13}{5}$	$\frac{20}{\sqrt{39}}$	$\frac{50}{3 \sqrt{11}}$	$\frac{100}{\sqrt{199}}$	$\frac{200}{\sqrt{399}}$	$\frac{1000}{\sqrt{1999}}$
	1	1.15	1.25	1.67	2	2.29	2.6	3.2	5.0	7.1	10.0	22.4

Table 1: Values of the Lorentz factor for several values of $\beta=\frac{v}{c}$.

This generalizes to nonintegral powers through the use of the gamma function for the binomial coefficients:

$$
\begin{equation*}
(x+y)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{k} y^{r-k}=y^{r}+r x y^{r-1}+\frac{r(r-1)}{2} x^{2} y^{r-2}+\frac{r(r-1)(r-2)}{6} x^{3} y^{r-3}+\cdots \tag{2}
\end{equation*}
$$

However, due to the infinities the sum may not converge:

$$
\begin{align*}
(1+x)^{-1} & =1-x+x^{2}-\cdots & & |x|<1 \tag{3}\\
(1+x)^{\frac{1}{2}} & =1+\frac{1}{2} x-\frac{1}{8} x^{2}+\cdots & & |x|<1 \tag{4}\\
(1+x)^{-\frac{1}{2}} & =1-\frac{1}{2} x+\frac{3}{8} x^{2}-\cdots & & |x|<1 \tag{5}
\end{align*}
$$

These provide a quick way to estimate quantities such as those arising in doppler shift and special relativity topics.

2 Classical Mechanics

Kinematics

$$
\begin{aligned}
\boldsymbol{x}(t) & =\boldsymbol{x}_{0}+\boldsymbol{v}_{0} t+\frac{1}{2} \boldsymbol{a} t^{2} \\
\boldsymbol{v}(t) & =\boldsymbol{v}_{0}+\boldsymbol{a} t \\
y_{\max } & =y_{0}+\frac{v_{0 y}^{2}}{2 g} \\
R & =\frac{v^{2}}{g} \sin 2 \theta
\end{aligned}
$$

(Constant Acceleration)
(Max Height)
(Range Equation)

Newton's Laws

$$
\begin{align*}
\sum \boldsymbol{F} & =0 \Longleftrightarrow \frac{\mathrm{~d} \boldsymbol{p}}{\mathrm{~d} t}=0 & & \left(1^{\text {st }} \text { Law }\right) \\
\boldsymbol{F} & =\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{~d} t}=\frac{\mathrm{d}(m \boldsymbol{v})}{\mathrm{d} t} & & \left(2^{\mathrm{d}} \text { Law }\right) \tag{d}\\
\boldsymbol{F}_{\mathrm{AB}} & =-\boldsymbol{F}_{\mathrm{BA}} & & \left(3^{\mathrm{d}} \text { Law }\right) \tag{d}
\end{align*}
$$

Work \& Energy

$$
\begin{equation*}
W=\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{s} \tag{Work}
\end{equation*}
$$

$$
\begin{aligned}
\sum W & =\Delta E \\
\boldsymbol{F} & =-\boldsymbol{\nabla} U \\
T & =T_{t}+T_{r}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{p^{2}}{2 m}+\frac{L^{2}}{2 I} \\
f_{\mathrm{s}} & \leq \mu_{\mathrm{s}} N \\
f_{\mathrm{k}} & =\mu_{\mathrm{k}} N \\
\boldsymbol{J} & =\Delta \boldsymbol{p}=\int \boldsymbol{F}(t) \mathrm{d} t
\end{aligned}
$$

(Work-Energy Theorem)
(Conservative Force)
(Kinetic Energy)
(Static Friction)
(Kinetic Friction)
(Impulse)

Rotational Motion

$$
\begin{array}{rlr}
\theta(t) & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} & \text { (Constant Angular Acceleration) } \\
\omega(t) & =\omega_{0}+\alpha t & \\
T & =\frac{1}{f}=\frac{2 \pi}{\omega} & \text { (Period } \leftrightarrow \text { Frequency) } \\
\boldsymbol{\tau} & =\boldsymbol{r} \times \boldsymbol{F} & \text { (Torque) } \tag{Torque}\\
\boldsymbol{L} & =\boldsymbol{r} \times \boldsymbol{p}=I \boldsymbol{\omega} & \text { (Angular Momentum) } \\
I & =\sum_{i} m_{i} r_{i}^{2}=\int r^{2} \mathrm{~d} m=\int r^{2} \rho(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} & \text { (Momentum of Inertia) } \\
\boldsymbol{\tau} & =\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{~d} t}=\frac{\mathrm{d}(\boldsymbol{r} \times \boldsymbol{p})}{\mathrm{d} t}=\frac{\mathrm{d}(I \boldsymbol{\omega})}{\mathrm{d} t} & \text { (Angular 2 }{ }^{\mathrm{d}} \text { Law) }
\end{array}
$$

Noninertial Reference Frames

$$
\begin{aligned}
\boldsymbol{F}_{\mathrm{cf}} & =-m \boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r}) \\
\boldsymbol{F}_{\mathrm{Co}} & =-2 m \boldsymbol{\omega} \times \boldsymbol{v}
\end{aligned}
$$

(Coriolis Force)

Dynamics of Systems of Particles

$$
\begin{equation*}
\boldsymbol{r}_{\mathrm{cm}}=\frac{1}{M} \sum_{i} m_{i} \boldsymbol{r}_{i}=\frac{1}{M} \int \boldsymbol{r} \mathrm{~d} m \tag{CenterofMass}
\end{equation*}
$$

Central Forces \& Celestial Mechanics

$$
\begin{array}{rlr}
\frac{\mathrm{d} A}{\mathrm{~d} t} & =\text { const. } & \left(\text { Kepler's } 2^{\mathrm{d}}\right. \text { Law) } \\
\frac{T^{2}}{a^{3}} & =\frac{4 \pi^{2}}{G(M+m)} \approx \frac{4 \pi^{2}}{G M} & \left(\text { Kepler's } 3^{\mathrm{d}}\right. \text { Law) } \\
g & =\frac{G M_{\oplus}}{R_{\oplus}^{\oplus}} \approx 9.81 \mathrm{~N} / \mathrm{kg} & (\text { Earth Surface Gravity) } \tag{d}
\end{array}
$$

Lagrangian Mechanics

$$
\begin{equation*}
S=\int L(\boldsymbol{q}, \dot{\boldsymbol{q}} ; t) \mathrm{d} t \tag{Action}
\end{equation*}
$$

$$
\begin{equation*}
0=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\boldsymbol{q}}}-\frac{\partial L}{\partial \boldsymbol{q}} \tag{Euler-LagrangeEquations}
\end{equation*}
$$

Hamiltonian Mechanics

$$
\begin{aligned}
\boldsymbol{p} & =\frac{\partial L}{\partial \dot{\boldsymbol{q}}} \\
H(\boldsymbol{q}, \boldsymbol{p} ; t) & =\dot{\boldsymbol{q}} \cdot \boldsymbol{p}-L(\boldsymbol{q}, \dot{\boldsymbol{q}} ; t) \\
\dot{\boldsymbol{q}} & =\frac{\partial H}{\partial \boldsymbol{p}}=\{\boldsymbol{q}, H\} \\
\dot{\boldsymbol{p}} & =-\frac{\partial H}{\partial \boldsymbol{q}}=\{\boldsymbol{p}, H\} \\
\frac{\mathrm{d} H}{\mathrm{~d} t} & =\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}
\end{aligned}
$$

(Conjugate Momentum)
(Hamiltonian)
(Hamilton's Equations)

Fluid Dynamics

$$
\begin{align*}
P & =\frac{\mathrm{d} F}{\mathrm{~d} A} \tag{Pressure}\\
\text { const. } & =P+\frac{1}{2} \rho v^{2}+\rho g h \\
0 & =\frac{\mathrm{d} \rho}{\mathrm{~d} t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{u}) \\
A v & =\text { const. } \\
F_{\text {buoy }} & =\rho_{\mathrm{fl}} V g
\end{align*}
$$

(Bernoulli Equation)
(Continuity Equation)
(Incompressible Tube Flow)
(Archimedes' Principle)

3 Electromagnetism

Electrostatics

$$
\begin{align*}
\boldsymbol{F} & =\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\boldsymbol{r}} \tag{Coulomb'sLaw}\\
\boldsymbol{E}(\boldsymbol{r}) & =\frac{\boldsymbol{F}}{q}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|^{2}} \frac{\boldsymbol{r}-\boldsymbol{r}_{i}}{\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|} \\
\boldsymbol{E} & =-\nabla V \\
V(\boldsymbol{r}) & =-\int_{\infty}^{\boldsymbol{r}} \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{s}
\end{align*}
$$

(Electric Field)
(Electric Potential)

Magnetostatics

$$
\begin{aligned}
\boldsymbol{F} & =q \boldsymbol{v} \times \boldsymbol{B}=I \boldsymbol{l} \times \boldsymbol{B} \\
\omega & =\frac{q B}{m} \\
\mathrm{~d} \boldsymbol{B} & =\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \boldsymbol{l} \times \hat{\boldsymbol{r}}}{r^{2}}
\end{aligned}
$$

(Magnetic Force)
(Cyclotron Frequency)
(Biot-Savart Law)

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =\frac{\rho}{\epsilon_{0}} \\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0 \\
\boldsymbol{\nabla} \times \boldsymbol{E} & =-\frac{\partial \boldsymbol{B}}{\partial t} \\
\boldsymbol{\nabla} \times \boldsymbol{B} & =\mu_{0} \boldsymbol{J}+\mu_{0} \epsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t} \\
\boldsymbol{D} & =\epsilon_{0} \boldsymbol{E}+\boldsymbol{P}=\epsilon \boldsymbol{E}=\epsilon_{0}\left(1+\chi_{e}\right) \boldsymbol{E} \\
\boldsymbol{H} & =\frac{1}{\mu_{0}} \boldsymbol{B}-\boldsymbol{M}=\frac{1}{\mu} \boldsymbol{B}=\frac{1}{\mu_{0}\left(1+\chi_{m}\right)} \boldsymbol{B}
\end{aligned}
$$

(Gauss' Law)
(Gauss' Law for Magnetism)
(Faraday's Law)
(Ampère's Law)
(Auxillary Fields)

Electromagnetic Induction

$$
\begin{aligned}
\Phi_{\mathrm{E}} & =\int_{A} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{A} \\
\Phi_{\mathrm{B}} & =\int_{A} \boldsymbol{B} \cdot \mathrm{~d} \boldsymbol{A} \\
\mathcal{E} & =-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{~d} t} \\
L & =\mu_{0} n^{2} A l
\end{aligned}
$$

(Electric Flux)
(Magnetic Flux)
(Induced EMF)
(Solenoid Self-Inductance)

Electromagnetic Waves

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} & =\nabla^{2} \boldsymbol{E} & & \text { (Vacuum Wave Equations) } \\
\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}} & =\nabla^{2} \boldsymbol{B} & & \\
c & =\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} & & \\
v & =\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{r} \mu_{0} \epsilon_{r} \epsilon_{0}}}=\frac{c}{\sqrt{\mu_{r} \epsilon_{r}}}=\frac{c}{n} & & \text { (Speed of Light) }
\end{aligned}
$$

Circuits

$$
\begin{aligned}
u & =\frac{I}{n A q} \\
V & =I R \\
P & =I V=I^{2} R=\frac{V^{2}}{R} \\
Q & =C V \\
U & =\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{Q^{2}}{2 C} \\
V & =L \frac{\mathrm{~d} I}{\mathrm{~d} t} \\
U & =\frac{1}{2} L I^{2}
\end{aligned}
$$

(Drift Velocity)
(Ohm's Law)
(Disspated Power)
(Capacitance)
(Energy of Capacitor)
(Inductor Potential)
(Energy of Inductor)

$$
\begin{aligned}
R_{\text {ser }} & =\sum_{i} R_{i} \\
\frac{1}{R_{\mathrm{par}}} & =\sum_{i} \frac{1}{R_{i}} \\
\frac{1}{C_{\text {ser }}} & =\sum_{i} \frac{1}{C_{i}} \\
C_{\text {par }} & =\sum_{i} C_{i} \\
\oint_{C} V \mathrm{~d} l & =0 \\
\sum_{i} I_{i} & =0 \\
\tau & =R C \\
\tau & =\frac{R}{L} \\
\omega & =\frac{1}{\sqrt{L C}} \\
Z_{\mathrm{C}} & =\frac{1}{i \omega C} \\
Z_{\mathrm{L}} & =i \omega L
\end{aligned}
$$

4 Quantum Mechanics

$$
\begin{aligned}
p & =\frac{h}{\lambda} \\
K_{\max } & =h \nu-W=e V_{\text {stop }}
\end{aligned}
$$

(de Broglie Wavelength)
(Photoelectric Effect)

Operators

$$
\begin{array}{rlrl}
\langle A\rangle & =\langle A \mid \Psi\rangle=\int \Psi^{*} A \psi \mathrm{~d} \boldsymbol{r} & \text { (Expected Value) } \\
\frac{\mathrm{d}}{\mathrm{~d} t}\langle A\rangle & =\frac{1}{i \hbar}\langle[A, H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle & & \text { (Ehrenfest Theorem) } \\
p_{i} & =-i \hbar \frac{\partial}{\partial x^{i}} & & \text { (Momemtum Operator) } \\
T & =\frac{\boldsymbol{p} \cdot \boldsymbol{p}}{2 m}=-\frac{\hbar^{2}}{2 m} \nabla^{2} & \text { (Angular Momentum) } \\
L_{z} & =-i \hbar \frac{\partial}{\partial \phi} & & \\
H & =T+V(x)=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x) & \text { (Honrelativistic Hamiltonian) } \\
a & =\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right)=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{\hbar}{m \omega} \frac{\partial}{\partial x}\right) \\
a^{\dagger} & =\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{\hbar}{m \omega} \frac{\partial}{\partial x}\right) &
\end{array}
$$

$$
\begin{aligned}
H & =\hbar \omega\left(N+\frac{1}{2}\right)=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right) \\
{\left[x_{i}, p_{j}\right] } & =i \hbar \delta_{i j} \\
{\left[f(x), p_{x}\right] } & =i \hbar f^{\prime}(x) \\
{\left[x, g\left(p_{x}\right)\right] } & =i \hbar g^{\prime}\left(p_{x}\right) \\
{\left[L_{i}, L_{j}\right] } & =i \hbar \epsilon_{i j k} L^{k} \\
{\left[L^{2}, L_{i}\right] } & =0 \\
{\left[a, a^{\dagger}\right] } & =1 \\
{[N, a] } & =-a \\
{\left[N, a^{\dagger}\right] } & =a^{\dagger}
\end{aligned}
$$

(Cannonical coordinates)
(Function of position) (Function of momentum)
(Angular momentum)
(Ladder Operators)

One-Dimensional Potentials

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}} \quad n \in\{1,2,3, \ldots\} \quad \text { (Infinite square well) } \\
& R=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2} \quad T=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}} \\
& T=\left(1+\frac{V_{0}^{2} \sin ^{2}\left(k_{2} L\right)}{4 E\left(E-V_{0}\right)}\right)^{-1} \\
& T=\left(1+\frac{V_{0}^{2} \sinh ^{2}\left(k_{2} L\right)}{4 E\left(V_{0}-E\right)}\right)^{-1} \\
& \psi(x)=\sqrt{\frac{m \beta}{\hbar^{2}}} \exp \left(-\frac{m \beta|x|}{\hbar^{2}}\right) \quad V(x)=-\beta \delta(x) \\
& \psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}} \sqrt[4]{\frac{m \omega}{\pi \hbar}} H_{n}(\xi) e^{-\xi^{2} / 2} \quad \xi=\sqrt{\frac{m \omega}{\hbar}} x \\
& E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n \in\{0,1,2, \ldots\} \\
& |n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle \\
& a=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right) \quad a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right) \\
& x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right) \quad p=i \sqrt{\frac{\hbar m \omega}{2}}\left(a^{\dagger}-a\right) \\
& \text { (Step: } E>V_{0} \text {) } \\
& \text { (Finite Barrier: } E>V_{0} \text {) } \\
& \text { (Finite Barrier: } E<V_{0} \text {) } \\
& \text { (Delta Well Bound State) } \\
& \text { (Harmonic Oscillator) }
\end{aligned}
$$

Angular Momentum \& Spin

$$
\begin{array}{rlrl}
L^{2}|l, m\rangle & =\hbar^{2} l(l+1)|l, m\rangle & & \\
L_{z}|l, m\rangle & =\hbar m|l, m\rangle & & \\
L_{ \pm}|l, m\rangle & =\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle & & \\
\sigma_{x} & =\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] & \text { (Ladder Operators) } \\
\sigma_{i}^{2} & =\mathbb{I}_{2} \quad \operatorname{det} \sigma_{i}=-1 \quad \begin{array}{ll}
\operatorname{tr} \sigma_{i}=0 & \\
\left\{\sigma_{i}, \sigma_{j}\right\} & =2 \delta_{i j} \mathbb{I}_{2}
\end{array} \quad\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma^{k} & & \\
\text { (Pauli Matrices) }
\end{array}
$$

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{B}=\frac{1}{2}\left(C^{2}-A^{2}-B^{2}\right) \quad \boldsymbol{C} \equiv \boldsymbol{A}+\boldsymbol{B} \tag{The"Trick"}
\end{equation*}
$$

Time-Independent Non-Degenerate Perturbation Theory

$$
\begin{array}{rlrl}
E_{n}^{(1)} & =\left\langle n^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle & \text { (1st-order energy correction) } \\
\left|n^{(1)}\right\rangle & =\sum_{k \neq n} \frac{\left\langle k^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle}{E_{n}^{(0)}-E_{k}^{(0)}}\left|k^{(0)}\right\rangle & \text { (1st-order eigenstate correction) } \\
E_{n}^{(2)} & =\sum_{k \neq n} \frac{\left.\left|\left\langle k^{(0)}\right| H^{\prime}\right| n^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}} & & \text { (2d }{ }^{\text {d }} \text {-order energy correction) }
\end{array}
$$

5 Thermodynamics \& Statistical Mechanics

Laws of Thermodynamics

$$
\begin{array}{rlrl}
T_{1} & =T_{2} \wedge T_{2}=T_{3} \quad \Longrightarrow \quad T_{1}=T_{3} & \\
\mathrm{đ} Q & =\mathrm{d} E+\mathrm{d} W & & \\
\Delta S & \geq 0 & & \\
T & \rightarrow 0 \quad\left(2^{\mathrm{st}} \text { Law } \text { Law }\right) \\
\left(3^{\mathrm{d}} \text { Law }\right) \\
& & & \left(4^{\text {th }} \text { Law }\right)
\end{array}
$$

Thermodynamic Processes

$$
\begin{array}{rlr}
S & =k \log \Omega & \tag{Entropy}\\
\mathrm{~d} S & =\frac{\mathrm{d} Q}{T} & \\
\beta & =\frac{1}{k T}=\frac{\partial \log \Omega}{\partial E}=\frac{1}{k} \frac{\partial S}{\partial E} & \\
S+S^{\prime} & =\text { maximal } \wedge T=T^{\prime} & \\
\mathrm{đ} Q & =0 & \\
P V^{\gamma} & =\text { const. } & \\
T V^{\gamma-1} & =\text { const. } & \\
P^{1-\gamma} T^{\gamma} & =\text { const. } & \\
\mathrm{d} T & =0 & \\
W & =n R T \log \left(\frac{V_{2}}{V_{1}}\right) & \\
\mathrm{d} P & =0 & \text { (Idiabaticatic Processeses) } \\
W & =P \Delta V & \text { (Isobaric Processeses) } \\
\end{array}
$$

Ideal Gases

$$
\begin{aligned}
P V & =n R T=N k T \\
\mathrm{~d} E & =\left(\frac{\partial E}{\partial T}\right)_{V} \mathrm{~d} T
\end{aligned}
$$

(Ideal Gas Law)
(Ideal Gas Energy)

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T=N k T
$$

(Van der Waals Equation)

Equipartition Theorem

$$
\begin{align*}
E\left(q_{1}, q_{2}, \ldots, q_{n}\right) & =E_{1}\left(q_{1}\right)+E^{\prime}\left(q_{2}, \ldots, q_{n}\right)=E_{1}+E^{\prime} \tag{Assumptions}\\
E_{1}\left(q_{1}\right) & =A q_{1}^{r} \\
\left\langle E_{1}\right\rangle & =\frac{1}{r} k T
\end{align*}
$$

(Conclusion)

Maxwell Relations

$$
\begin{array}{rlr}
\left(\frac{\partial T}{\partial V}\right)_{S} & =-\left(\frac{\partial P}{\partial S}\right)_{V} & \left(\frac{\partial T}{\partial P}\right)_{S}
\end{array}=\left(\frac{\partial V}{\partial S}\right)_{P} \quad \text { (Maxwell Relations) }
$$

Statistical Mechanics

$$
\begin{array}{rlr}
Z & =\sum_{i} e^{-\beta E_{i}}=\sum_{E} \Omega(E) e^{-\beta E} & \text { (Partition Function) } \\
Z & =\prod_{i} \zeta_{i} & \text { (Weakly Interacting Subsystems) } \\
Z & =\frac{\zeta^{N}}{N!} & \text { (Indistinguishable Subsystems) } \\
\langle E\rangle & =-\frac{\partial \log Z}{\partial \beta} & \text { (Average Energy) } \\
S & =k(\log Z+\beta\langle E\rangle) & \text { (Sntropy) } \\
C_{\mathrm{V}} & =\frac{1}{k T^{2}} \frac{\partial^{2} \log Z}{\partial T^{2}} & \text { (Specific Heat) }
\end{array}
$$

Particle Statistics

$$
\begin{aligned}
\left\langle n_{i}\right\rangle & =N \cdot \frac{e^{-\beta E_{i}}}{Z} \\
\left\langle n_{i}\right\rangle & =\frac{1}{e^{\left(E_{i}-\mu\right) / k T}-1} \\
\left\langle n_{i}\right\rangle & =\frac{1}{e^{\left(E_{i}-\mu\right) / k T}+1} \\
\left\langle n_{i}\right\rangle & =\frac{1}{e^{E_{i} / k T}-1}
\end{aligned}
$$

(Maxwell-Boltzmann Statistics)
(Bose-Einstein Statistics)
(Fermi-Dirac Statistics)
(Photon Statistics)

Theories of Specific Heat

$$
\begin{aligned}
& c_{\mathrm{V}}=3 N_{\mathrm{A}} k\left(\frac{h \nu}{k T}\right)^{2} \frac{e^{h \nu / k T}}{\left(e^{h \nu / k T}-1\right)^{2}} \\
& c_{\mathrm{V}} \rightarrow \alpha T^{3} \\
& c_{\mathrm{V}} \rightarrow 3 N_{\mathrm{A}} k=3 R
\end{aligned}
$$

6 Atomic Physics

Bohr Model

$$
\begin{align*}
L & =n \hbar \quad n \in\{1,2,3, \ldots\} \\
r_{n} & =\frac{\hbar^{2} n^{2}}{Z k e^{2} \mu}=\frac{a_{0} n^{2}}{Z} \tag{Radii}\\
a_{0} & =\frac{\hbar^{2}}{k m e^{2}} \approx 0.529 \AA \\
E_{n} & =-\frac{Z^{2} k^{2} e^{4} \mu}{2 \hbar^{2} n^{2}}=-13.6 \mathrm{eV} \frac{Z^{2}}{n^{2}} \\
n & \in\{1,2,3, \ldots\} \\
l & \in\{0,1, \ldots, n-1\} \\
m_{l} & \in\{-l,-l+1, \ldots, l\} \\
m_{s} & \in\{-s,-s+1, \ldots, s\}
\end{align*}
$$

(Bohr Radius)
(Hydrogen Energy Levels)
(Principle Quantum №)
(Azimuthal Quantum №)
(Magnetic Quantum №)
(Spin Projection Quantum №)
Selection Rules

$$
\begin{aligned}
\Delta l & = \pm 1 \\
\Delta m & =0, \pm 1 \\
\Delta s & =0 \\
j_{i} & =0 \nrightarrow j_{f}=0
\end{aligned}
$$

(Electric Dipole Selection Rules)

Blackbody Radiation

$$
\begin{aligned}
I_{\mathrm{P}}(\lambda, T) & =\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e \frac{h c}{\lambda k T}-1} \\
\lambda_{\text {peak }} T & =2.9 \cdot 10^{6} \mathrm{~nm} \mathrm{~K} \\
I_{\mathrm{RJ}}(\lambda, T) & =\frac{2 c k T}{\lambda^{4}} \\
I_{\mathrm{W}} & =\frac{2 h c^{2}}{\lambda^{5}} e^{-\frac{h c}{\lambda k T}}
\end{aligned}
$$

(Planck's Law)
(Wien's Displacement Law)
(Raleigh-Jeans Law)
(Wien's Law)

Compton Scattering

$$
\begin{equation*}
\Delta \lambda=\frac{h}{m c}(1-\cos \theta) \tag{ComptonShift}
\end{equation*}
$$

$$
\begin{aligned}
& \lambda_{\mathrm{C}}=\frac{h}{m c} \\
& \lambda_{\mathrm{C}}=\frac{h}{m_{e} c} \approx 2.43 \mathrm{pm}
\end{aligned}
$$

(Compton Wavelength)
(Electron Compton Wavelength)

Moseley's Law

$$
\begin{aligned}
& E=13.6 \mathrm{eV}\left(\frac{3}{4}\right)(Z-1)^{2} \\
& E=13.6 \mathrm{eV}\left(\frac{5}{36}\right)(Z-7.4)^{2}
\end{aligned}
$$

(K K Photons: $n=2 \rightarrow 1$)
(L α Photons: $n=3 \rightarrow 2$)

7 Optics \& Wave Phenomena

Wave Properties

$$
\begin{aligned}
\frac{1}{v_{\mathrm{p}}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} & =\nabla^{2} \phi \\
v_{\mathrm{p}} & =\frac{\omega}{k}=\frac{\lambda}{T} \\
v_{\mathrm{g}} & =\frac{\mathrm{d} \omega(k)}{\mathrm{d} k} \\
2 \pi f_{\mathrm{B}} & =\omega_{\mathrm{B}}=\left|\omega_{1}-\omega_{2}\right|
\end{aligned}
$$

Interference \& Diffraction

$$
\begin{array}{rlrl}
n \lambda & =d \sin \theta \approx d \cdot \frac{y}{D} & & \text { (Double-Slit Maxima) } \\
\left(n+\frac{1}{2}\right) \lambda & =d \sin \theta \approx d \cdot \frac{y}{D} & & \text { (Double-Slit Minima) } \\
\left(n+\frac{1}{2}\right) \lambda & =a \sin \theta \approx a \cdot \frac{y}{D} & & \text { (Single-Slit Maxima) } \\
n \lambda & =a \sin \theta \approx a \cdot \frac{y}{D} & & \text { (Single-Slit Minima) } \\
I & =I_{0} \cos ^{2}\left(\frac{\pi d y}{\lambda D}\right) \operatorname{sinc}^{2}\left(\frac{\pi a y}{\lambda D}\right) & & \text { (Double-Slit Intensity) } \\
f_{n} & =\frac{c}{\lambda_{n}}=\frac{(2 n+1) c}{4 L}=(2 n+1) f_{0} \\
f_{n} & =\frac{c}{\lambda_{n}}=\frac{n c}{2 L}=n f_{1} & & \text { (Half-Open Frequencies) } \\
\text { (Both Open Freqencies) }
\end{array}
$$

Geometrical Optics

$$
\begin{aligned}
n_{1} \sin \theta_{1} & =n_{2} \sin \theta_{2} \\
\theta_{\text {crit }} & =\arcsin \left(\frac{n_{2}}{n_{1}}\right) \\
\theta_{\text {Brew }} & =\arctan \left(\frac{n_{2}}{n_{1}}\right)
\end{aligned}
$$

(Snell's Law)
(Critical Angle)
(Brewster's Angle)

$$
\begin{aligned}
\frac{1}{f} & =(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\frac{1}{o}+\frac{1}{f} & =\frac{1}{i} \\
M & =\frac{i}{o}
\end{aligned}
$$

Doppler Effect

$$
\begin{align*}
& f=\left(\frac{c+v_{\mathrm{o}}}{c+v_{\mathrm{s}}}\right) f_{0} \tag{DopplerShift}\\
& f=\left(1+\frac{\Delta v}{c}\right) f_{0}
\end{align*}
$$

(Low Velocity Approximation)

8 Relativity

Four-Vectors \& Lorentz Transformations

$$
\begin{align*}
& x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z) \tag{Four-Position}\\
& \eta_{\mu \nu}=\eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1) \\
& M_{\mu}=\eta_{\mu \nu} M^{\nu} \quad M^{\mu}=\eta^{\mu \nu} M_{\nu} \\
& \mathrm{d} s^{2}=\mathrm{d} x_{\mu} \mathrm{d} x^{\mu}=c^{2} \mathrm{~d} t^{2}-\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)=c^{2} \mathrm{~d} t^{2}-\mathrm{d} \boldsymbol{x}^{2} \\
& \gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}} \\
& {\left[\begin{array}{l}
x^{\prime 0} \\
x^{\prime 1} \\
x^{\prime 2} \\
x^{\prime 3}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right]} \\
& v^{\prime}=\frac{v+u}{1+\frac{v u}{c^{2}}} \\
& \boldsymbol{p}=\gamma m \boldsymbol{v} \\
& E=\gamma m c^{2} \\
& E^{2}=\left(m c^{2}\right)^{2}+|\boldsymbol{p}|^{2} c^{2} \\
& p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(\frac{E}{c}, p_{x}, p_{y}, p_{z}\right) \\
& p_{\mu} p^{\mu}=m^{2} c^{2} \\
& \text { (Minkowski Metric) } \\
& \text { (Raising \& Lowering of Indices) } \\
& \text { (Spacetime Interval) } \\
& \text { (Lorentz Factor) } \\
& \text { (Boost Along } x \text {-Axis) } \\
& \text { (Colinear Velocity Addition) } \\
& \text { (Momentum) } \\
& \text { (Energy) } \\
& \text { (Four-Momentum) }
\end{align*}
$$

Time Dilation \& Length Contraction

$$
\begin{aligned}
\Delta t & =\gamma \Delta \tau \\
L & =\frac{L_{0}}{\gamma}
\end{aligned}
$$

(Time Dilation)
(Length Contraction)

Electromagnetism

$$
\begin{array}{rlrl}
A^{\mu} & =\left(A^{0}, A^{1}, A^{2}, A^{3}\right)=\left(\frac{V}{c}, A_{x}, A_{y}, A_{z}\right) \\
F^{\mu \nu} & =\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} & & \\
E_{x}^{\prime} & =E_{x} & B_{x}^{\prime} & =B_{x} \\
E_{y}^{\prime} & =\gamma\left(E_{y}-v B_{z}\right) & B_{y}^{\prime} & =\gamma\left(B_{y}+v E_{z} / c^{2}\right) \\
E_{z}^{\prime} & =\gamma\left(E_{z}+v B_{y}\right) & B_{z}^{\prime} & =\gamma\left(B_{z}-v E_{y} / c^{2}\right)
\end{array}
$$

(Four-Potential)
(Electromagnetic Field Tensor)
(Boost Along x-Axis)

Doppler Effect

$$
\lambda=\frac{c}{f}=\lambda_{0} \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}=\frac{c}{f_{0}} \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}
$$

(Doppler Effect)

General Relativity

$$
r_{\mathrm{s}}=\frac{2 G M}{c^{2}}
$$

(Schwarzchild Radius)

$9 \quad$ Specialized Topics

Radioactive Decay

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} t} & =-\gamma N \\
N(t) & =N_{0} e^{-\gamma t}=N_{0} e^{-t / \tau}=N_{0} 2^{-t / t_{1 / 2}} \\
\tau & =\frac{1}{\gamma}=\frac{t_{1 / 2}}{\log 2}
\end{aligned}
$$

(Exponential Decay)

X-Ray Diffraction

$$
2 d \sin \theta=n \lambda \quad n \in\{1,2,3, \ldots\}
$$

Vector Differential Operators

$$
\begin{align*}
\boldsymbol{\nabla} f & =\frac{\partial f}{\partial x} \hat{\boldsymbol{\imath}}+\frac{\partial f}{\partial y} \hat{\boldsymbol{\jmath}}+\frac{\partial f}{\partial z} \hat{\boldsymbol{k}} \tag{Gradient}\\
\boldsymbol{\nabla} \cdot \boldsymbol{F} & =\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z} \\
\boldsymbol{\nabla} \times \boldsymbol{F} & =\left|\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\boldsymbol{\imath}}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\boldsymbol{\jmath}}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\boldsymbol{k}} \quad \text { (Curl) } \tag{Curl}\\
\nabla^{2} f & =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{align*}
$$

Fourier Series

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
a_{m} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos m x \mathrm{~d} x \quad m \in\{0,1,2, \ldots\} \\
b_{k} & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin k x \mathrm{~d} x \quad k \in\{1,2,3, \ldots\}
\end{aligned}
$$

Matrix Algebra

$$
\begin{array}{rlr}
\operatorname{tr} A & =\sum_{i} a_{i i}=\sum_{i} \lambda_{i} & \quad \text { (Trace) } \tag{Trace}\\
\operatorname{det} A & =\prod_{i} \lambda_{i} & \text { (Determinant) } \\
\operatorname{det} A_{2 \times 2} & =a_{11} a_{22}-a_{12} a_{21} & (2 \times 2 \text { Determinant) } \\
A_{2 \times 2}^{-1} & =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] & (2 \times 2 \text { Inverse) } \\
\lambda_{ \pm} & =\frac{\operatorname{tr} A}{2} \pm \sqrt{\left(\frac{\operatorname{tr} A}{2}\right)^{2}-\operatorname{det} A} & (2 \times 2 \text { Eigenvalues) }
\end{array}
$$

