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1 Ensembles

All possible states for a system comprise an ensemble, with each microstate may be assumed to be
equally likely. The probability of a macrostate will then be the proportion of microstates in those
accessible which have the given property. For example, if the system has three equivalent degrees of
freedom amongst which three quanta of energy are distributed, the following arrangements comprise
the ensemble:

(3, 0, 0) (0, 3, 0) (0, 0, 3) (2, 1, 0) (2, 0, 1) (1)

(1, 2, 0) (1, 0, 2) (0, 2, 1) (0, 1, 2) (1, 1, 1) (2)

The probability of the system having one degree of freedom with all three quanta is thus 3
10 = 0.3

since exactly three microstates satisfy this condition out of the total ten.
It is convenient to introduce entropy, defined to be

S = k log Ω (3)

One can show that when two systems, A and A′, interact and reach thermal equilibrium, then

S + S′ = maximal T = T ′ (4)

where β−1 = kT and β is defined by

β =
∂log Ω

∂E
=

1

k

∂S

∂E
(5)

If the two systems are not initially at the same temperature then they are in a highly unlikely
configuration that will evolve to a state of higher total entropy; this is captured by the second law
of thermodynamics.

2 Laws of Thermodynamics

The four laws of thermodynamics are

0. If two systems are each in thermal equilibrium with a third system then they are in thermal
equilibrium with each other: i.e. thermal equilibrium is transitive.

1. Conservation of energy: d̄Q = dE +d̄W

2. ∆S ≥ 0 for any thermodynamic process when considering a large enough system.

3. The entropy of a system approaches a constant value as the temperature approaches absolute
zero: T → 0 =⇒ S → S0.

The zeroth law legitimizes the use of well-defined temperature scales, i.e. thermometers. The
second law implies that cooler objects never heat warmer objects.

3 Thermodynamic Processes

A process is said to be quasistatic if it occurs slowly enough to ensure that the system remains
in equilibrium throughout. A process is said to be reversible if two states may be reached from
eachother. A necessary condition for a process to be reversible is dS = 0 throughout.
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3.1 Equations of State Any quantity that depends only on the current state of a system is
called an equation of state. Examples include: energy; entropy; enthalpy; temperature; pressure;
volume. Any quantity which depends on that “path” taken, such as work and heat, is not an
equation of state.

dS =
d̄Q

T
dE = d̄Q−d̄W = T dS −d̄W (6)

3.2 Adiabatic Processes When no heat is transferred a process is called adiabatic. In this
case the conservation of energy becomes

dE +d̄W = 0 =⇒ ∆E = −∆W (7)

From the relation dS = d̄Q
T , we see that the entropy is constant, and so adiabatic processes are

reversible. In the case of an ideal gas one may show that the pressure, volume and temperature
are related by

PV γ = const. TV γ−1 = const. P 1−γT γ = const. (8)

where γ = CP
CV

is 5
3 for a monatomic ideal gas and 7

5 for a diatomic ideal gas. Thus the change in
energy between two states is

∆E = −∆W = −
∫ 2

1
P dV = −

∫ 2

1

P1V
γ

1

V γ
dV =

P1V1

γ − 1

[(
V1

V2

)γ−1

− 1

]
(9)

3.3 Isothermal Processes Here the temperature of the system is held fixed. For an ideal
gas this means that the combination PV is constant. The work done in moving between two
configurations is

W =

∫ 2

1
P dV =

∫ 2

1

P1V1

V
dV = nRT log

(
V2

V1

)
(10)

3.4 Isobaric Processes Here the pressure is constant, and for ideal gases this means that the
temperature and volume are directly proportional. The work done through expansion is

W = P∆V (11)

4 Ideal Gases

An idealized gas experiences no inter-molecular forces. Many real-world gases are approximately
ideal at high temperatures and low pressures. The thermodynamic quantities associated with an
ideal gas are related by the ideal gas law:

PV = nRT = NkT (12)

n is the number of moles, while N is the number of molecules. The ideal gas constant, R, and the
Boltzmann constant, k, are related through Avagadro’s number by

R = NAk (13)

Because the interactions between gas molecules are negligible, the energy of an ideal gas system
only depends on the temperature:

dE =

(
∂E

∂T

)
V

dT (14)
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A generalization of the idea gas law is Van der Waals equation:(
P +

n2a

V 2

)
(V − nb) = nRT = NkT (15)

The constants a and b are determined empirically for any system and account for the intermolecular
forces and nonzero volumes of the particles. The ideal gas law is the simplification a = b = 0.

5 Equipartition Theorem

Let A be a system described by the coordinates q1, q2, . . . , qn. Assume that the energy of the system
may be written

E(q1, q2, . . . , qn) = E1(q1) + E′(q2, . . . , qn) = E1 + E′ (16)

that is, the energy is separable in the coordinate q1. In addition assume that the system is in
thermal equilibrium with its surroundings at a temperature T . We would like to find the average
energy associated with q1, 〈E1〉.

〈E1〉 =

∫
E1P (E1) dE1 =

∫
E1e

−βE dq1dq2 · · · dqn∫
e−βE dq1dq2 · · · dqn

(17)

=

∫
E1e

−βE1e−βE
′
dq1dq2 · · · dqn∫

e−βE1e−βE′ dq1dq2 · · · dqn
=

∫
E1e

−βE1 dq1∫
e−βE1 dq1

·
∫
e−βE

′
dq2 · · · dqn∫

e−βE′ dq2 · · · dqn
(18)

= −
∂
∂β

∫
e−βE1 dq1∫

e−βE1 dq1
= − ∂

∂β
log

(∫
e−βE1 dq1

)
(19)

Now assume the common form E1(q1) = Aqr1:

= − ∂

∂β
log

(∫
e−βAq

r
1 dq1

)
(20)

Make a change of variables to x = β1/rq1:

= − ∂

∂β
log

(
β−1/r

∫
e−Ax

r
dx

)
= − ∂

∂β
log
(
β−1/r

)
− ∂

∂β
log

(∫
e−Ax

r
dx

)
(21)

=
1

r

∂

∂β
log β −

(
0
)

=
1

rβ
=

1

r
kT (22)

Summarizing, if the energy of a system in thermal equilibrium with its surroundings has an energy
which may be written as

E(q1, q2, . . . , qn) = Aqr1 + E′(q2, . . . , qn) (23)

then we have

〈E1〉 = 〈Aqr1〉 =
1

r
kT (24)

For example, an idealized harmonic oscillator has energy given by

E = T + U =
1

2
mv2 +

1

2
mω2x2 (25)
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and so has average energy

〈E〉 = 〈T 〉+ 〈U〉 =

〈
1

2
mv2

〉
+

〈
1

2
mω2x2

〉
=

1

2
kT +

1

2
kT = kT (26)

In a gas there are three translational degrees of freedom, giving an average energy 〈E〉 = 3
2kT . At

higher temperatures and a diatomic molecule the rotational modes may now be excited, giving an
additional two degrees of freedom and an average energy 〈E〉 = 5

2kT . At still higher temperatures
the diatomic molecules may be in excited vibrational modes. With both vibrational kinetic and
potential energies, there are an additional two degrees of freedom, giving an average energy 〈E〉 =
7
2kT . Explicitly, at high energies the energy for a diatomic molecule would be of the form

E =
1

2
M
(
v2
x + v2

y + v2
z

)
+

1

2
I
(
ω2

1 + ω2
2

)
+

1

2
µη̇2 +

1

2
kη2 (27)

M is the molecule’s mass, v is the center of mass velocity, I is the moment of inertia about an axis
perpendicular to the symmetry axis of the molecule, ωi are the angular velocities about the two
axes perpendicular to the symmetry axis of the molecule, µ is the reduced mass of the molecule, k
is the effective spring constant for the bond and η is the deviation of the atomic separation distance
from its natural length. The seven quadratic degrees of freedom are clearly visible.

6 Maxwell Relations

The equality of mixed partial derivatives gives rise to several Maxwell relations between common
thermodynamic variables:(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

(28)(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

(29)

A mnemonic for remembering these is the following square, along with the phrase Good Physicists
Have Studied Under Very Fine Teachers.

−S U V

H F

−P G T

This may be used to quickly express thermodynamic quantities in terms of conjugate variables,
located in opposing corners. The two corners opposite the chosen potential are the coefficients for
the differentials. For example, the Gibb’s free energy, G is given by

dG = −S dT + V dP (30)

Notice that the minus sign only appears for the coefficient S and not the differential dP . Since we
could have written

dG =

(
∂G

∂T

)
P

dT +

(
∂G

∂P

)
T

dP (31)

we conclude that

S = −
(
∂G

∂T

)
P

V =

(
∂G

∂P

)
T

(32)
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Equating the mixed partial derivatives of G results in the following:

∂

∂P

(
∂G

∂T

)
P

=
∂

∂T

(
∂G

∂P

)
T

=⇒ −
(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

(33)

The other Maxwell relations arise through similar analyses.

7 Statistical Mechanics

The partition function for a system is defined to be

Z =
∑
i

e−βEi =
∑
E

Ω(E)e−βE (34)

In the first expression the sum is over all states, which may be degenerate in energy. In the second
expression the sum is over all energies, with the degeneracy of these states denoted by Ω(E). Both
methods give the same result.

If a system consists of subsystems, with individual partition functions ζi, which weakly interact
then the partition function for the whole system is given by

Z =
∏
i

ζi (35)

However, when consider a system of N indistinguishable particles we must include a combinatorial
factor:

Z =
ζN

N !
(36)

Refined versions of this are found with a quantum mechanical foundation, giving rise to particle
statistics, discussed below.

The partition function allows for a statistical calculation of thermodynamic quantities, such as

〈E〉 = −∂logZ

∂β
(37)

S = k(logZ + β 〈E〉) (38)

CV =
1

kT 2

∂2logZ

∂T 2
(39)

8 Particle Statistics

The classical treatment of multi-particle systems where particles are distinguishable leads to Maxwell-
Boltzmann statistics: the expected number of particles in a given state with energy Ei is

〈ni〉 = N · e−βEi∑
j e
−βEj

= N · e
−βEi

Z
(40)

When indistiguishability is introduced in the quantum mechanical treatment of a multiparticle
system two distinct behaviours arise: Bose-Einstein statistics and Fermi-Dirac statistics. Bose-
Einstein statistics describe systems of bosons, which have integral spin, where the total wavefunction
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is unchanged after swapping two particles. This results in the expected number of particles in a
state with energy Ei being

〈ni〉 =
1

e(Ei−µ)/kT − 1
(41)

where µ is the chemical potential. For large T this is

〈ni〉 ≈
kT

Ei − µ
(42)

Fermi-Dirac statistics describe fermions, which have half-integral spin, where the total wavefunction
changes sign upon swapping two particles. One consequence of this is that no two particles may
be in the same quantum state, for then the wavefunction would vanish. The expected number of
particles in a state with energy Ei here is

〈ni〉 =
1

e(Ei−µ)/kT + 1
(43)

Notice that for any temperature this is never greater than one.
In the case of photons there is no restriction on the number of particles and the expected number

of particles in a state with energy Ei is

〈ni〉 =
1

eEi/kT − 1
(44)

For large T this is

〈ni〉 ≈
kT

Ei
(45)

9 Einstein & Debye Theories of Specific Heat

Einstein assumed that solids may be modelled as collections of identical, isotropic harmonic oscil-
lators with three degrees of freedom per molecule. Using the appropriate quantum statistics, the
average energy of a vibrational states is

〈E〉 =
hν

ehν/kT − 1
(46)

The quantity hν
k is referred to as the Einstein temperature. The total energy per mole is given by

E

n
=

3NAhν

ehν/kT − 1
(47)

and the specific heat is

cV =
1

n

∂E

∂T
= 3NAk

(
hν

kT

)2 ehν/kT(
ehν/kT − 1

)2 (48)

At high temperatures we have the approximate expression

cV ≈ 3NAk

(
1 +

hν

kT

)
≈ 3NAk = 3R (49)

This matches the classically derived Law of Dulong and Petit:

E = 3nkTNA = 3nRT (50)

However, the low temperature behaviour does not match observation, where the specific heat is seen
to go as T 3. In contrast, the Debye model considers the normal modes of the solid, or “phonons”,
and correctly matches both the high- and low-temperature limiting behaviours.
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A Summary

Laws of Thermodynamics

T1 = T2 ∧ T2 = T3 =⇒ T1 = T3 (1st Law)

d̄Q = dE +d̄W (2d Law)

∆S ≥ 0 (3d Law)

T → 0 =⇒ S → S0 (4th Law)

Thermodynamic Processes

S = k log Ω (Entropy)

dS =
d̄Q

T

β =
1

kT
=
∂log Ω

∂E
=

1

k

∂S

∂E
(Temperature)

S + S′ = maximal ∧ T = T ′ (Thermal Equilibrium)

d̄Q = 0 (Adiabatic Processes)

PV γ = const.

TV γ−1 = const.

P 1−γT γ = const.

dT = 0 (Isothermal Processes)

W = nRT log

(
V2

V1

)
dP = 0 (Isobaric Processes)

W = P∆V

Ideal Gases

PV = nRT = NkT (Ideal Gas Law)

dE =

(
∂E

∂T

)
V

dT (Ideal Gas Energy)(
P +

n2a

V 2

)
(V − nb) = nRT = NkT (Van der Waals Equation)

Equipartition Theorem

E(q1, q2, . . . , qn) = E1(q1) + E′(q2, . . . , qn) = E1 + E′ (Assumptions)

E1(q1) = Aqr1

〈E1〉 =
1

r
kT (Conclusion)
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Maxwell Relations(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

(Maxwell Relations)(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

H = E + PV (Enthalpy)

G = H − TS (Gibb’s Free Energy)

F = E − TS (Helmholtz Free Energy)

−S U V

H F

−P G T

(Mnemonic)

Statistical Mechanics

Z =
∑
i

e−βEi =
∑
E

Ω(E)e−βE (Partition Function)

Z =
∏
i

ζi (Weakly Interacting Subsystems)

Z =
ζN

N !
(Indistinguishable Subsystems)

〈E〉 = −∂logZ

∂β
(Average Energy)

S = k(logZ + β 〈E〉) (Entropy)

CV =
1

kT 2

∂2logZ

∂T 2
(Specific Heat)

Particle Statistics

〈ni〉 = N · e
−βEi

Z
(Maxwell-Boltzmann Statistics)

〈ni〉 =
1

e(Ei−µ)/kT − 1
(Bose-Einstein Statistics)

〈ni〉 =
1

e(Ei−µ)/kT + 1
(Fermi-Dirac Statistics)

〈ni〉 =
1

eEi/kT − 1
(Photon Statistics)

Theories of Specific Heat

cV = 3NAk

(
hν

kT

)2 ehν/kT(
ehν/kT − 1

)2 (Einstein Theory)

cV → αT 3 (Debye Low Temperature)

cV → 3NAk = 3R (Einstein & Debye High Temperature)

(51)
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